OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 26 — Dec. 12, 2011
  • pp: B47–B55

Efficient terahertz slot-line waveguides

Hamid Pahlevaninezhad, Barmak Heshmat, and Thomas Edward Darcie  »View Author Affiliations


Optics Express, Vol. 19, Issue 26, pp. B47-B55 (2011)
http://dx.doi.org/10.1364/OE.19.000B47


View Full Text Article

Enhanced HTML    Acrobat PDF (1571 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present two solutions to the challenge of radiation loss of slot-lines at terahertz frequencies: using a slot-line in a homogeneous medium, and using a slot-line on a layered substrate. A theoretical analysis of the slot-line in a homogeneous medium as a terahertz transmission line is presented. The absorption coefficient is obtained in terms of the waveguide dimensions using the field distribution of the slot-line. Results show that the slot-line in a homogeneous medium and the slot-line on a layered substrate can be effective transmission lines for terahertz waves with 2 cm−1 and 3 cm−1 absorption due to conductor loss. Full-wave numerical simulations using the Finite Element Method (FEM) are applied to validate the theory.

© 2011 OSA

OCIS Codes
(230.7370) Optical devices : Waveguides
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Waveguide and Opto-Electronic Devices

History
Original Manuscript: September 16, 2011
Revised Manuscript: October 11, 2011
Manuscript Accepted: October 12, 2011
Published: November 16, 2011

Virtual Issues
European Conference on Optical Communication 2011 (2011) Optics Express

Citation
Hamid Pahlevaninezhad, Barmak Heshmat, and Thomas Edward Darcie, "Efficient terahertz slot-line waveguides," Opt. Express 19, B47-B55 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-26-B47


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett.26(11), 846–848 (2001). [CrossRef] [PubMed]
  2. H. Zhan, R. Mendis, and D. M. Mittleman, “Characterization of the terahertz near-field output of parallel-plate waveguides,” J. Opt. Soc. Am. B28(3), 558–566 (2011). [CrossRef]
  3. J. Liu, R. Mendis, and D. M. Mittleman, “The transition from a TEM-like mode to a plasmonic mode in parallel-plate waveguides,” Appl. Phys. Lett.98(23), 231113 (2011). [CrossRef]
  4. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432(7015), 376–379 (2004). [CrossRef] [PubMed]
  5. H. Pahlevaninezhad, T. E. Darcie, and B. Heshmat, “Two-wire waveguide for terahertz,” Opt. Express18(7), 7415–7420 (2010). [CrossRef] [PubMed]
  6. H. Pahlevaninezhad and T. E. Darcie, “Coupling of terahertz waves to a two-wire waveguide,” Opt. Express18(22), 22614–22624 (2010). [CrossRef] [PubMed]
  7. M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, “Terahertz Attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. Microw. Theory Tech.39(6), 910–916 (1991). [CrossRef]
  8. D. R. Grischkowsky, M. B. Ketchen, C.-C. Chi, I. N. Duling, N. J. Halas, J.-M. Halbout, and P. G. May, “Capacitance free generation and detection of subpicosecond electrical pulses on coplanar transmission lines,” IEEE J. Quantum Electron.24(2), 221–225 (1988). [CrossRef]
  9. D. Grischkowsky, I. I. I. Duling, J. C. Chen, and C. C. Chi, “Electromagnetic shock waves from transmission lines,” Phys. Rev. Lett.59(15), 1663–1666 (1987). [CrossRef] [PubMed]
  10. D. Grischkowsky, “Optoelectronic characterization of transmission lines and waveguides by terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron.6(6), 1122–1135 (2000). [CrossRef]
  11. J. V. Jelley, Cherenlov radiation and its applications (Pergamon, New York, 1958).
  12. C. Fattinger and D. Grischkowsky, “Observation of electromagnetic shock waves from propagating surface-dipole distributions,” Phys. Rev. Lett.62(25), 2961–2964 (1989). [CrossRef] [PubMed]
  13. D. K. Kleinman and D. H. Auston, “Theory of Electrooptic shock radiation in nonlinear optical media,” IEEE J. Quantum Electron.20(8), 964–970 (1984). [CrossRef]
  14. Z. Ruan, G. Veronis, K. L. Vodopyanov, M. M. Fejer, and S. Fan, “Enhancement of optics-to-THz conversion efficiency by metallic slot waveguides,” Opt. Express17(16), 13502–13515 (2009). [CrossRef] [PubMed]
  15. J. D. Jackson, Classical electrodynamics (John Wiley & Sons, 1999), pp. 352–356.
  16. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: Modeling the flow of light, 2nd Edition (Princeton Univ. Press,2008), Chap. 4.
  17. P. Yeh, A. Yariv, and C. Hong, “Electromagnetic propagation in perodic media. I. General theory,” J. Opt. Soc. Am.67(4), 423–438 (1977). [CrossRef]
  18. P. Yeh, Optical waves in layered media (Wiley,1988), Chap.6.
  19. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley,1984), Chap. 6.
  20. D. M. Pozar, “Microwave engineering (John Wiley & Sons, 2005), pp. 97-98.
  21. D. Grischkowsky, S. Keiding, M. Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B7(10), 2006–2015 (1990). [CrossRef]
  22. M. Y. Frankel, R. H. Voelker, and J. N. Hilfiker, “Coplanar transmission lines on thin substrates for high-speed low-loss propagation,” IEEE Trans. Microw. Theory Tech.42(3), 396–402 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited