OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 26 — Dec. 12, 2011
  • pp: B628–B635

Pulse shaping for 112 Gbit/s polarization multiplexed 16-QAM signals using a 21 GSa/s DAC

John C. Cartledge, John D. Downie, Jason E. Hurley, Abdullah S. Karar, Ying Jiang, and Kim Roberts  »View Author Affiliations


Optics Express, Vol. 19, Issue 26, pp. B628-B635 (2011)
http://dx.doi.org/10.1364/OE.19.00B628


View Full Text Article

Enhanced HTML    Acrobat PDF (1389 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The implications of increasing the symbol rate for a given digital-to-analog converter (DAC) sampling rate are investigated by considering the generation of 112 Gbit/s PM 16-QAM signals (14 Gsym/s) using a 21 GSa/s DAC with 6-bit resolution.

© 2011 OSA

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems

ToC Category:
Subsystems for Optical Networks

History
Original Manuscript: September 30, 2011
Manuscript Accepted: November 12, 2011
Published: December 1, 2011

Virtual Issues
European Conference on Optical Communication 2011 (2011) Optics Express

Citation
John C. Cartledge, John D. Downie, Jason E. Hurley, Abdullah S. Karar, Ying Jiang, and Kim Roberts, "Pulse shaping for 112 Gbit/s polarization multiplexed 16-QAM signals using a 21 GSa/s DAC," Opt. Express 19, B628-B635 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-26-B628


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Roberts, M. O'Sullivan, K.-T. Wu, H. Sun, A. Awadalla, D. J. Krause, and C. Laperle, “Performance of dual-polarization QPSK for optical transport systems,” J. Lightwave Technol.27(16), 3546–3559 (2009). [CrossRef]
  2. P. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “Spectrally efficient long-haul optical networking using 112-Gb/s polarization-multiplexed 16-QAM,” J. Lightwave Technol.28(4), 547–556 (2010). [CrossRef]
  3. S. Yamanaka, T. Kobayashi, A. Sano, H. Masuda, E. Yoshida, Y. Miyamoto, T. Nakagawa, M. Nagatani, and H. Nosaka, “11×171 Gb/s PDM 16-QAM transmission over 1440 km with a spectral efficiency of 6.4 b/s/Hz using high-speed DAC,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), paper We.8.C.1.
  4. M. Nölle, J. Hilt, L. Molle, M. Seimetz, and R. Freund, “8×224 Gbit/s PDM 16QAM WDM transmission with real-time signal processing at the transmitter,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), paper We.8.C.4.
  5. R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett.22(21), 1601–1603 (2010). [CrossRef]
  6. B. Châtelain, D. Krause, K. Roberts, M. Chagnon, X. Xu, F. Gagnon, J. C. Cartledge, and D. V. Plant, “SPM-tolerant pulse shaping for 40 Gb/s and 100 Gb/s dual-polarization QPSK systems,” IEEE Photon. Technol. Lett.22, 1641–1643 (2010).
  7. R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, B. Nebendahl, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Real-time Nyquist pulse modulation transmitter generating rectangular shaped spectra of 112 Gbit/s 16QAM signals,” in Signal Processing in Photonic Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper SPMA5.
  8. A. Konczykowska, J.-Y. Dupuy, F. Jorge, M. Riet, J. Moulu, V. Nodjiadjim, P. Berdaguer, and J. Godin, “42 GBd 3-bit power-DAC for optical communications with advanced modulation formats in InP DHBT,” Electron. Lett.47(6), 389–390 (2011). [CrossRef]
  9. Y. M. Greshishchev, D. Pollex, S.-C. Wang, M. Besson, P. Flemeke, S. Szilagyi, J. Aguirre, C. Falt, N. Ben-Hamida, R. Gibbins, and P. Schvan, “A 56GS/s 6b DAC in 65nm CMOS with 256×6b memory,” in 2011 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (2011), pp. 194–196.
  10. N. Kikuchi and S. Sasaki, “Long-distance standard single-mode fiber transmission of 40-Gbit/s 16QAM signal with optical delay-detection and digital pre-distortion of chromatic dispersion,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThE3.
  11. T. Sugihara and T. Kobayashi, T, Fujimori, and T. Mizuochi, “Electronic pre-equalization technologies using high-speed DAC,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Tu.6.B.2.
  12. S. Oda, T. Tanimura, Y. Cao, T. Hoshida, Y. Akiyama, H. Nakashima, C. Ohshima, K. Sone, Y. Aoki, M. Yan, Z. Tao, J. C. Rasmussen, Y. Yamamoto, and T. Sasaki, “80×224 Gb/s unrepeated transmission over 240 km of large-Aeff pure silica core fibre without remote optical preamplifier,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Th.13.C.7.
  13. J. C. Cartledge, J. D. Downie, J. Hurley, A. S. Karar, Y. Jiang, and K. Roberts, “Pulse shaping for 112 Gbit/s polarization multiplexed 16-QAM signals using a 21 GSa/s DAC,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper We.7.A.5.
  14. K. Roberts, A. Borowiec, and C. Laperle, “Technologies for optical systems beyond 100G,” Opt. Fiber Technol.17(5), 387–394 (2011). [CrossRef]
  15. P. Bower and I. Dedic, “High speed converters and DSP for 100G and beyond,” Opt. Fiber Technol.17(5), 464–471 (2011). [CrossRef]
  16. J. C. Cartledge, Y. Jiang, A. S. Karar, J. Harley, and K. Roberts, “Arbitrary waveform generation for pre-compensation in optical fiber communication systems,” Opt. Commun.284(15), 3711–3717 (2011). [CrossRef]
  17. J.-K. Hwang, Y.-L. Chiu, and C.-S. Liao, “Angle differential-QAM scheme for resolving phase ambiguity in continuous transmission system,” Int. J. Commun. Syst.21(6), 631–641 (2008). [CrossRef]
  18. I. Fatadin, D. Ives, and S. J. Savory, “Compensation of frequency offset for differentially encoded 16- and 64-QAM in the presence of laser phase noise,” IEEE Photon. Technol. Lett.22(3), 176–178 (2010). [CrossRef]
  19. I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett.20(20), 1733–1735 (2008). [CrossRef]
  20. H. Meyer, M. Moeneclaey, and S. A. Fechtel, Digital Communications Receivers (Wiley-Interscience, 1997), section 5.4.
  21. M. Selmi, Y. Jaouën, and P. Cibalt, “Accurate digital frequency offset estimator for coherent PolMux QAM transmission systems,” in 35th European Conference on Optical Communication, 2009. ECOC '09 (2009), paper P3.08.
  22. T. Pfau, S. Hoffmann, and R. Noé, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightwave Technol.27(8), 989–999 (2009). [CrossRef]
  23. I. Fatadin, D. Ives, and S. J. Savory, “Blind equalization and carrier phase recovery in a 16-QAM optical coherent system,” J. Lightwave Technol.27(15), 3042–3049 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited