OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 26 — Dec. 12, 2011
  • pp: B636–B644

Narrow-line-width 1.31-μm wavelength tunable quantum dot laser using sandwiched sub-nano separator growth technique

Naokatsu Yamamoto, Kouichi Akahane, Tetsuya Kawanishi, Yu Omigawa, Hideyuki Sotobayashi, Yuki Yoshioka, and Hiroshi Takai  »View Author Affiliations


Optics Express, Vol. 19, Issue 26, pp. B636-B644 (2011)
http://dx.doi.org/10.1364/OE.19.00B636


View Full Text Article

Enhanced HTML    Acrobat PDF (2105 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A wide wavelength tunable quantum dot (QD) external cavity laser operating in the 1.31-μm waveband with a narrow line-width is successfully demonstrated. A high-density, high-quality InAs/InGaAs QD optical gain medium for the 1.31-μm waveband was obtained using a sandwiched sub-nano separator growth technique. A wide wavelength tunability of 1.265–1.321 μm and a narrow line-width of 210 kHz were successfully achieved using a compact and robust external cavity system constructed with multiple optical band-pass and etalon filters for active optical mode selection. The laser also achieved an error-free 10-Gb/s photonic data transmission over an 11.4-km-long holey fiber.

© 2011 OSA

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4510) Fiber optics and optical communications : Optical communications
(250.5960) Optoelectronics : Semiconductor lasers
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Waveguide and Opto-Electronic Devices

History
Original Manuscript: September 28, 2011
Revised Manuscript: October 18, 2011
Manuscript Accepted: October 18, 2011
Published: December 1, 2011

Virtual Issues
European Conference on Optical Communication 2011 (2011) Optics Express

Citation
Naokatsu Yamamoto, Kouichi Akahane, Tetsuya Kawanishi, Yu Omigawa, Hideyuki Sotobayashi, Yuki Yoshioka, and Hiroshi Takai, "Narrow-line-width 1.31-μm wavelength tunable quantum dot laser using sandwiched sub-nano separator growth technique," Opt. Express 19, B636-B644 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-26-B636


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. H. Gnauck, G. Charlet, P. Tran, P. Winzer, C. Doerr, J. Centanni, E. Burrows, T. Kawanishi, T. Sakamoto, and K. Higuma, “25.6-Tb/s C+L-Band Transmission of Polarization-Multiplexed RZ-DQPSK Signals,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2007), paper PDP19.
  2. A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsu, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “69.1-Tb/s (432 x 171-Gb/s) C- and Extended L-Band Transmission over 240 Km Using PDM-16-QAM Modulation and Digital Coherent Detection,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2010), paper PDPB7.
  3. N. Yamamoto and H. Sotobayashi, “All-band photonic transport system and its device technologies,” Proc. SPIE 7235, 72350C, 72350C–11 (2009). [CrossRef]
  4. N. Yamamoto, H. Sotobayashi, K. Akahane, M. Tsuchiya, K. Takashima, and H. Yokoyama, “10-Gbps, 1-microm waveband photonic transmission with a harmonically mode-locked semiconductor laser,” Opt. Express16(24), 19836–19843 (2008). [CrossRef] [PubMed]
  5. N. Yamamoto, Y. Omigawa, K. Akahane, T. Kawanishi, and H. Sotobayashi, “Simultaneous 3 x 10 Gbps optical data transmission in 1-mum, C-, and L-wavebands over a single holey fiber using an ultra-broadband photonic transport system,” Opt. Express18(5), 4695–4700 (2010). [CrossRef] [PubMed]
  6. H. Liu, C.-F. Lam, and C. Johnson, “Scaling Optical Interconnects in Datacenter Networks - Opportunities and Challenges for WDM,” in Proceedings of 18th IEEE Symposium on High Performance Interconnects (IEEE, 2010), pp. 113–116.
  7. A. Sano, T. Kobayashi, E. Yoshida, and Y. Miyamoto, “Ultra-high capacity optical transmission technologies for 100 Tbit/s optical transport networks,” IEICE Trans. Commun, E94-B, 400–408 (2011).
  8. Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett.40(11), 939–941 (1982). [CrossRef]
  9. H. Y. Liu, M. Hopkinson, C. N. Harrison, M. J. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3 μm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys.93(5), 2931–2936 (2003). [CrossRef]
  10. K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-Insensitive Eye-Opening under 10-Gb/s Modulation of 1.3-µm P-Doped Quantum-Dot Lasers without Current Adjustments,” Jpn. J. Appl. Phys.43(No. 8B), L1124–L1126 (2004). [CrossRef]
  11. Y. Tanaka, M. Ishida, Y. Maeda, T. Akiyama, T. Yamamoto, H. Song, M. Yamaguchi, Y. Nakata, K. Nishi, M. Sugawara, and Y. Arakawa, “High-Speed and Temperature-Insensitive Operation in 1.3-μm InAs/GaAs High-Density Quantum Dot Lasers,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2009), paper OWJ1.
  12. A. Gubenko, I. Krestnikov, D. Livshtis, S. Mikhrin, A. Kovsh, L. West, C. Bornholdt, N. Grote, and A. Zhukov, “Error-free 10 Gbit/s transmission using individual Fabry-Perot modes of low-noise quantum-dot laser,” Electron. Lett.43(25), 1430–1431 (2007). [CrossRef]
  13. E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics1(7), 395–401 (2007). [CrossRef]
  14. N. Yamamoto, K. Akahane, S. Gozu, and N. Ohtani, “Over 1.3 µm continuous-wave laser emission from InGaSb quantum-dot laser diode fabricated on GaAs substrates,” Appl. Phys. Lett.86(20), 203118 (2005). [CrossRef]
  15. N. Yamamoto, K. Akahane, T. Kawanishi, R. Katouf, and H. Sotobayashi, “Quantum Dot Optical Frequency Comb Laser with Mode-Selection Technique for 1-µm Waveband Photonic Transport System,” Jpn. J. Appl. Phys.49(4), 04DG03 (2010). [CrossRef]
  16. A. Y. Nevsky, U. Bressel, I. Ernsting, C. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, “A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral ranges,” Appl. Phys. B92(4), 501–507 (2008). [CrossRef]
  17. N. Yamamoto, K. Akahane, T. Kawanishi, H. Sotobayashi, H. Fujioka, and H. Takai, “Broadband light source using modulated quantum dot structures with sandwiched sub-nano separator (SSNS) technique,” Phys. Status Solidi., C Curr. Top. Solid State Phys.8(2), 328–330 (2011). [CrossRef]
  18. M. Pfister, M. B. Johnson, S. F. Alvarado, H. W. M. Sa-lemink, U. Marti, D. Martin, F. Morier-Genoud, and F. K. Reinhart, “Indium distribution in InGaAs quantum wires observed with the scanning tunneling microscope,” Appl. Phys. Lett.67(10), 1459–1461 (1995). [CrossRef]
  19. N. Yamamoto, Y. Yoshioka, K. Akahane, T. Kawanishi, H. Sotobayashi, and H. Takai, “100-GHz channel spacing and O-band quantum dot optical frequency comb generator with interference injection locking technique,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO) 2011, paper CTuV7.
  20. T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett.16(16), 630–631 (1980). [CrossRef]
  21. K. Mukasa, K. Imamura, R. Sugizaki, and T. Yagi, “Comparisons of merits on wideband transmission systems between using extremely improved solid SMFs with Aeff of 160 mm2 and loss of 0.175 dB/km and using large-Aeff holey fibers enabling transmission over 600 nm bandwidth,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2008), paper OThR1.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited