OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 26 — Dec. 12, 2011
  • pp: B653–B660

Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber

Sy Dat Le, Duc Minh Nguyen, Monique Thual, Laurent Bramerie, Marcia Costa e Silva, Kevin Lenglé, Mathilde Gay, Thierry Chartier, Laurent Brilland, David Méchin, Perrine Toupin, and Johann Troles  »View Author Affiliations

Optics Express, Vol. 19, Issue 26, pp. B653-B660 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (810 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a chalcogenide suspended-core fiber with ultra-high nonlinearity and low attenuation loss. The glass composition is As38Se62.With a core diameter as small as 1.13 µm, a record Kerr nonlinearity of 46 000 W–1km–1 is demonstrated with attenuation loss of 0.9 dB/m. Four-wave mixing is experimented by using a 1m-long chalcogenide fiber for 10 GHz and 42.7 GHz signals. Four-wave mixing efficiencies of –5.6 dB at 10 GHz and –17.5 dB at 42.7 GHz are obtained. We also observed higher orders of four-wave mixing for both repetition rates.

© 2011 OSA

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fibers, Fiber Devices, and Amplifiers

Original Manuscript: October 3, 2011
Revised Manuscript: November 21, 2011
Manuscript Accepted: November 29, 2011
Published: December 2, 2011

Virtual Issues
European Conference on Optical Communication 2011 (2011) Optics Express

Sy Dat Le, Duc Minh Nguyen, Monique Thual, Laurent Bramerie, Marcia Costa e Silva, Kevin Lenglé, Mathilde Gay, Thierry Chartier, Laurent Brilland, David Méchin, Perrine Toupin, and Johann Troles, "Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber," Opt. Express 19, B653-B660 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011). [CrossRef]
  2. J. S. Sanghera, L. B. Shaw, C. M. Flore, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8(6), 2148–2155 (2006).
  3. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21(6), 1146–1155 (2004).
  4. M. R. E. Lamont, L. Fu, M. Rochette, D. J. Moss, and B. J. Eggleton, “2R optical regenerator in As2Se3 chalcogenide fiber characterized by a frequency-resolved optical gating analysis,” Appl. Opt. 45(30), 7904–7907 (2006). [CrossRef] [PubMed]
  5. D.-I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008). [CrossRef] [PubMed]
  6. D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy,” Opt. Lett. 36(7), 1122–1124 (2011). [CrossRef] [PubMed]
  7. M. D. Pelusi, F. Luan, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear Chalcogenide glass chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010). [CrossRef]
  8. M. D. Pelusi, F. Luan, E. Magi, M. R. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express 16(15), 11506–11512 (2008). [CrossRef] [PubMed]
  9. L. B. Fu, M. D. Pelusi, E. C. Magi, V. G. Ta'eed, and B. J. Eggleton, “Broadband all-optical wavelength conversion of 40 Gbit/s signals in nonlinearity enhanced tapered chalcogenide fibre,” Electron. Lett. 44(1), 44–46 (2008). [CrossRef]
  10. F. Luan, J. Van Erps, M. D. Pelusi, E. Magi, T. Iredale, H. Thienpont, and B. J. Eggleton, “High-resolution optical sampling of 640 Gbit/s data using dispersion-engineered chalcogenide photonic wire,” Electron. Lett. 46(3), 231–232 (2010). [CrossRef]
  11. T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express 18(16), 17252–17261 (2010). [CrossRef] [PubMed]
  12. D. M. Nguyen, S. D. Le, K. Lengle, D. Méchin, M. Thual, T. Chartier, Q. Coulombier, J. Troles, L. Bramerie, and L. Brilland, “Demonstration of nonlinear effects in an ultra-highly nonlinear AsSe suspended-core Chalcogenide fiber,” IEEE Photon. Technol. Lett. 22(24), 1844–1846 (2010). [CrossRef]
  13. J. A. Savage and S. Nielsen, “Chalcogenide glasses transmitting in the infrared between 1 and 20 µm,” Infrared Phys. 5(4), 195–204 (1965). [CrossRef]
  14. T. Miyashita and Y. Terunuma, “Optical transmission loss of As-S fiber in 1.0-55µm wavelength region,” Jpn. J. Appl. Phys. 21(Part 2, No. 2), L75–L76 (1982). [CrossRef]
  15. G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009). [CrossRef]
  16. T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36(24), 1998–2000 (2000). [CrossRef]
  17. J. Fatome, C. Fortier, T. N. Nguyen, T. Chartier, F. Smektala, K. Messaad, B. Kibler, S. Pitois, G. Gadret, C. Finot, J. Troles, F. Desevedavy, P. Houizot, G. Renversez, L. Brilland, and N. Traynor, “Linear and nonlinear characterizations of chalcogenide photonic crystal fibers,” J. Lightwave Technol. 27(11), 1707–1715 (2009). [CrossRef]
  18. Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T. N. N’guyen, F. Smektala, G. Renversez, A. Monteville, D. Méchin, T. Pain, H. Orain, J.-C. Sangleboeuf, and J. Trolès, “Casting method for producing low-loss chalcogenide microstructured optical fibers,” Opt. Express 18(9), 9107–9112 (2010). [CrossRef] [PubMed]
  19. M. Thual, P. Rochard, P. Chanclou, and L. Quetel, “Contribution to research on Micro-Lensed Fibers for Modes Coupling,” Fiber Integr. Opt. 27(6), 532–541 (2008). [CrossRef]
  20. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (2006).
  21. S. Song, C. T. Allen, K. R. Demarest, and R. Hui, “Intensity-dependent phase-matching effects on four-wave miwing in optical fibers,” J. Lightwave Technol. 17(11), 2285–2290 (1999). [CrossRef]
  22. J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, “Adiabatic coupling in tapered air-silica microstructured optical fiber,” IEEE Photon. Technol. Lett. 13(1), 52–54 (2001). [CrossRef]
  23. K. Lengle, A. Akrout, M. C. Silva, L. Bramerie, S. Combrie, P. Colman, J.-C. Simon, and A. D. Rossi, “10 GHz demonstration of four-wave-mixing in photonic crystal waveguides,” in Proc. ECOC (2010).
  24. M. Costa e Silva, A. Lagrost, L. Bramerie, M. Gay, P. Benard, M. Joindot, J. C. Simon, A. Shen, and G.-H. Duan, “Up to 427 GHz all optical frequency down-conversion clock recovery based on quantum-dash Fabry-Perot mode-locked laser,” J. Lightwave Technol. 29(4), 609–615 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited