OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 26 — Dec. 12, 2011
  • pp: B687–B701

Simultaneous clock recovery and dispersion, OSNR monitoring for 112-Gbit/s NRZ-DQPSK using frequency down-conversion electro-optical phase-locked loop

He Wen, Lin Cheng, Jinxin Liao, Xiaoping Zheng, Hanyi Zhang, Yili Guo, and Bingkun Zhou  »View Author Affiliations


Optics Express, Vol. 19, Issue 26, pp. B687-B701 (2011)
http://dx.doi.org/10.1364/OE.19.00B687


View Full Text Article

Enhanced HTML    Acrobat PDF (1318 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A cost effective clock recovery scheme simultaneously providing signal performance monitoring is proposed for high speed electrical time domain multiplexing (ETDM) transmission systems to release the bandwidth requirement on the involved electrical devices. In the scheme, we first convert the clock frequency down in the optical domain using electroptic modulation, and then extract the clock with a phase locked loop (PLL) after photo-detection. All the devices involved are operated at frequencies lower than half of the symbol rate. Furthermore, we use a quadrature phase detector in the PLL to create a monitor signal which characterizes the transmitted signal performance in terms of optical-to-noise ratio (OSNR) and accumulated chromatic dispersion (ACD). This scheme is applied to a 112-Gbit/s none-return-to-zero (NRZ) differential quadrature phase shift keying (DQPSK) system. Experimental results show that the clock can be recovered in a dispersion range of −40 to 40 ps/nm, and the evaluated OSNR, over a range of 18~36 dB, has a deviation smaller than 1 dB compared to the measured one based on the optical spectrum method. The bit error ratio remains below 10−9 for 12 hours in the back-to-back case and 2 hours after transmission over 100-km standard single mode fiber (SSMF).

© 2011 OSA

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(060.5060) Fiber optics and optical communications : Phase modulation

ToC Category:
Access Networks and LAN

History
Original Manuscript: October 3, 2011
Revised Manuscript: November 24, 2011
Manuscript Accepted: November 25, 2011
Published: December 5, 2011

Virtual Issues
European Conference on Optical Communication 2011 (2011) Optics Express

Citation
He Wen, Lin Cheng, Jinxin Liao, Xiaoping Zheng, Hanyi Zhang, Yili Guo, and Bingkun Zhou, "Simultaneous clock recovery and dispersion, OSNR monitoring for 112-Gbit/s NRZ-DQPSK using frequency down-conversion electro-optical phase-locked loop," Opt. Express 19, B687-B701 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-26-B687


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Camera, “100GbE Optical Transport, Appropriate Modulation Formats, and Impact on Deployed Transport Networks,” in Proc. OFC/NFOEC’10, NME3 (San Diego, CA, U.S.A. 2010).
  2. D. Hillerkuss, A. Marculescu, J. Li, M. Teschke, G. Sigurdsson, K. Worms, S. Ben Ezra, N. Narkiss, W. Freude, and J. Leuthold, “Novel Optical Fast Fourier Transform Scheme Enabling Real-Time OFDM Processing at 392 Gbit/s and Beyond,” in Proc. OFC/NFOEC’10, OWW3 (San Diego, CA, U.S.A. 2010).
  3. P. J. Winzer, A. H. Gnauck, S. Chandrasekhar, S. Draving, J. Evangelista, and B. Zhu, “Generation and 1,200-km Transmission of 448-Gb/s ETDM 56-Gbaud PDM 16-QAM using a Single I/Q Modulator,” in ECOC 2010, PD2.2 (Torino, Italy, 2010).
  4. T. Ellermeyer, R. Schmid, A. Bielik, J. Rupeter, and M. Moller, “DA and AD Converters in SiGe Technology: Speed and Resolution for Ultra High Data Rate Applications,” Proc. ECOC’10, Th.10.A.6 (Torino, Italy, 2010).
  5. M. G. Taylor, “Coherent Detection Method Using DSP for Demodulation of Signal and Subsequent Equalization of Propagation Impairments,” IEEE Photon. Technol. Lett.16(2), 674–676 (2004). [CrossRef]
  6. N. E. Jolley, H. Kee, P. Pickard, J. Tang, and K. Cordina, “Generation and propagation of a 1550 nm 10 Gbit/s optical orthogonal frequency division multiplexed signal over 1000m of multimode fibre using a directly modulated DFB,” in Proc.OFC/NFOEC 2005, OFP3.
  7. A. H. Gnauck, G. Charlet, P. Tran, P. J. Winzer, C. R. Doerr, J. C. Centanni, E. C. Burrows, T. Kawanishi, T. Sakamoto, and K. Higuma, “25.6-Tb/s C+L-Band Transmission of Polarization-Multiplexed RZ-DQPSK Signals,” in OFC’07, PDP19 (Anaheim, California, U.S.A. 2007).
  8. K. Schuh and B. Junginger, E. lach, G. Veith, “1 Tbit/s (10x107 Gbit/s ETDM) Serial NRZ Transmission over 480km SSMF,” in OFC’07, PDP23 (Anaheim, California, U.S.A. 2007).
  9. D. S. Waddy, P. Lu, L. Chen, and X. Bao, “Fast state of polarization changes in aerial fiber under different climatic conditions,” IEEE Photon. Technol. Lett.13(9), 1035–1037 (2001). [CrossRef]
  10. P. C. Noutsios, “In-service Measurements of Polarization Fluctuations on Field-installed OC-192 DWDM Systems,” International Symposium on Signals, Systems and Electronics, 2007. ISSSE '07, pp.323–326.
  11. A. Walter, G.S. Schaefer, “Chromatic dispersion variations in ultra-long-haul transmission systems arising from seasonal soil temperature variations,” in OFC 2002 pp. 332, WU5 (2002).
  12. D. C. Kilper, R. Bach, D. J. Blumenthal, D. Einstein, T. Landolsi, L. Ostar, M. Preiss, and A. E. Willner, “Optical Performance Monitoring,” J. Lightwave Technol.22(1), 294–304 (2004). [CrossRef]
  13. S. Sygletos, I. Tomkos, and J. Leuthold, “Technological Challenges on the road toward transparent networking,” J. Opt. Netw.7(4), 321–350 (2008). [CrossRef]
  14. T. von Lerber, S. Honkanen, A. Tervonen, H. Ludvigsen, and F. Küppers, “Optical clock recovery methods: Review (Invited),” Opt. Fiber Technol.15(4), 363–372 (2009). [CrossRef]
  15. T. Ohara, H. Takara, I. Shake, T. Yamada, M. Ishii, I. Ogawa, M. Okamoto, and S. Kawanishi, “Highly Stable 160-Gb/s OTDM Technologies Based on Integrated MUX/DEMUX and Drift-Free PLL-Type Clock Recovery,” IEEE J. Sel. Top. Quantum Electron.13(1), 40–48 (2007). [CrossRef]
  16. D. K. Woo, K. W. Kim, S.-K. Lim, and J. Ko, “Implementation of a Low-Cost Phase-Locked Loop Clock-Recovery Module for 40-Gb/s Optical Receivers,” Microw. Opt. Technol. Lett.48(2), 312–315 (2006). [CrossRef]
  17. K. Wang, J. Li, A. Djupsjobacka, M. Chacinski, U. Westergren, S. Popov, G. Jacobsen, V. Hurm, R. E. Makon, R. Driad, H. Walcher, J. Rosenzweig, A. G. Steffan, G. G. Mekonnen, and H.-G. Bach, “100 Gb/s Complete ETDM System Based on Monolithically Integrated Transmitter and Receiver Modules,” in Proc. OFC/NFOEC’10, NME1 (San Diego, CA, U.S.A. 2010).
  18. S. Vehovc, M. Vidmar, and A. Paoletti, “80Gbit/s optical clock recovery with automatic lock acquisition using electrical phase-locked loop,” Electron. Lett.39(8), 673–674 (2003). [CrossRef]
  19. T. F. Carruthers and J. W. Lou, “80 to 10Gbit/s clock recovery using phase detection with Mach-Zehnder modulator,” Electron. Lett.37(14), 906–907 (2001). [CrossRef]
  20. H. Wen, L. Cheng, X. Zheng, H. Zhang, Y. Guo, and B. Zhou, “Simultaneous Clock Recovery and Dispersion, OSNR Monitoring for 112Gbit/s NRZ-DQPSK Using Frequency Down-Conversion Electro-Optical Phase-Locked Loop,” in Proc. ECOC2011, Tu.6.A.5 (Geneva, Switzerland, 2011).
  21. F. Gardener, Phaselock Techniques, 3rd ed. (John Wiley & Sons, Inc., 2005), pp. 13–18, 184–188.
  22. J.-K. Kang and D.-H. Kim, “A CMOS clock and data recovery with two-XOR phase-frequency detector circuit,” The 2001 IEEE International Symposium on Circuits and Systems, ISCAS 2001, Vol. 4, pp. 266–289 (2001).
  23. C. Ware, L. K. Oxenløwe, F. Gómez Agis, H. C. Mulvad, M. Galili, S. Kurimura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “320 Gbps to 10 GHz sub-clock recovery using a PPLN-based opto-electronic phase-locked loop,” Opt. Express16(7), 5007–5012 (2008). [CrossRef] [PubMed]
  24. E. S. Awad, P. S. Cho, C. Richardson, N. Moulton, and J. Goldhar, “Optical 3R regeneration using a single EAM for all-optical timing extraction with simultaneous reshaping and wavelength conversion,” IEEE Photon. Technol. Lett.14(9), 1378–1380 (2002). [CrossRef]
  25. J. H. Lee, D. K. Jung, C. H. Kim, and Y. C. Chung, “OSNR monitoring technique using polarization-nulling method,” IEEE Photon. Technol. Lett.13(1), 88–90 (2001). [CrossRef]
  26. H. Suzuki and N. Takachio, “Optical signal quality monitor built into WDM linear repeaters using semiconductor arrayed waveguide grating filter monolithically integrated with eight photodiodes,” Electron. Lett.35(10), 836–837 (1999). [CrossRef]
  27. R. M. Jopson, L. E. Nelson, H. Kogelnik, and G. J. Foschini, “Probability densities of depolarization associated with second-order PMD in optical fibers,” in Proc. Opt. Fiber Communications Conf., OFC’01, ThA-4 (Anaheim, CA, U.S.A. 2001).
  28. A. J. Zilkie, C. Lin, and P. G. Wigley, “Effect of Neighboring Channels in OSNR Monitoring With Fractional-Bit-Delay Interferometers,” in Proc. OFC’09, JThA12 (San Diego, CA, U.S.A. 2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited