OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 26 — Dec. 12, 2011
  • pp: B736–B745

Experimental demonstration of flexible bandwidth networking with real-time impairment awareness

David J. Geisler, Roberto Proietti, Yawei Yin, Ryan P. Scott, Xinran Cai, Nicolas K. Fontaine, Loukas Paraschis, Ori Gerstel, and S. J. B. Yoo  »View Author Affiliations


Optics Express, Vol. 19, Issue 26, pp. B736-B745 (2011)
http://dx.doi.org/10.1364/OE.19.00B736


View Full Text Article

Enhanced HTML    Acrobat PDF (840 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a flexible-bandwidth network testbed with a real-time, adaptive control plane that adjusts modulation format and spectrum-positioning to maintain quality of service (QoS) and high spectral efficiency. Here, low-speed supervisory channels and field-programmable gate arrays (FPGAs) enabled real-time impairment detection of high-speed flexible bandwidth channels (flexpaths). Using premeasured correlation data between the supervisory channel quality of transmission (QoT) and flexpath QoT, the control plane adapted flexpath spectral efficiency and spectral location based on link quality. Experimental demonstrations show a back-to-back link with a 360-Gb/s flexpath in which the control plane adapts to varying link optical signal to noise ratio (OSNR) by adjusting the flexpath’s spectral efficiency (i.e., changing the flexpath modulation format) between binary phase-shift keying (BPSK), quaternary phase-shift keying (QPSK), and eight phase-shift keying (8PSK). This enables maintaining the data rate while using only the minimum necessary bandwidth and extending the OSNR range over which the bit error rate in the flexpath meets the quality of service (QoS) requirement (e.g. the forward error correction (FEC) limit). Further experimental demonstrations with two flexpaths show a control plane adapting to changes in OSNR on one link by changing the modulation format of the affected flexpath (220 Gb/s), and adjusting the spectral location of the other flexpath (120 Gb/s) to maintain a defragmented spectrum.

© 2011 OSA

OCIS Codes
(060.1155) Fiber optics and optical communications : All-optical networks
(060.4264) Fiber optics and optical communications : Networks, wavelength assignment

ToC Category:
Backbone and Core Networks

History
Original Manuscript: November 2, 2011
Manuscript Accepted: November 18, 2011
Published: December 6, 2011

Virtual Issues
European Conference on Optical Communication 2011 (2011) Optics Express

Citation
David J. Geisler, Roberto Proietti, Yawei Yin, Ryan P. Scott, Xinran Cai, Nicolas K. Fontaine, Loukas Paraschis, Ori Gerstel, and S. J. B. Yoo, "Experimental demonstration of flexible bandwidth networking with real-time impairment awareness," Opt. Express 19, B736-B745 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-26-B736


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, Y. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network,” IEEE Commun. Mag.48(8), 138–145 (2010). [CrossRef]
  2. C. V. Saradhi and S. Subramaniam, “Physical layer impairment aware routing (PLIAR) in WDM optical networks: issues and challenges,” IEEE Commun. Surveys Tutorials11(4), 109–130 (2009). [CrossRef]
  3. Z. Pan, C. Yu, and A. E. Willner, “Optical performance monitoring for the next generation optical communication networks,” Opt. Fiber Technol.16(1), 20–45 (2010). [CrossRef]
  4. A. E. Willner, “The optical network of the future: can optical performance monitoring enable automated, intelligent and robust systems?” Opt. Photonics News17(3), 30–35 (2006). [CrossRef]
  5. D. C. Kilper, R. Bach, D. J. Blumenthal, D. Einstein, T. Landolsi, L. Ostar, M. Preiss, and A. E. Willner, “Optical performance monitoring,” J. Lightwave Technol.22(1), 294–304 (2004). [CrossRef]
  6. S. Azodolmolky, J. Perello, M. Angelou, F. Agraz, L. Velasco, S. Spadaro, Y. Pointurier, A. Francescon, C. V. Saradhi, P. Kokkinos, E. A. Varvarigos, S. Al Zahr, M. Gagnaire, M. Gunkel, D. Klonidis, and I. Tomkos, “Experimental demonstration of an impairment aware network planning and operation tool for transparent/translucent optical networks,” J. Lightwave Technol.29(4), 439–448 (2011). [CrossRef]
  7. M. Gagnaire and S. Zahr, “Impairment-aware routing and wavelength assignment in translucent networks: state of the art,” IEEE Commun. Mag.47(5), 55–61 (2009). [CrossRef]
  8. D. J. Geisler, R. Proietti, Y. Yin, R. P. Scott, X. Cai, N. K. Fontaine, L. Paraschis, O. Gerstel, and S. J. B. Yoo, “The first testbed demonstration of a flexible bandwidth network with a real-time adaptive control plane,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Th.13.K.2.
  9. R. P. Scott, N. K. Fontaine, J. P. Heritage, and S. J. B. Yoo, “Dynamic optical arbitrary waveform generation and measurement,” Opt. Express18(18), 18655–18670 (2010). [CrossRef] [PubMed]
  10. D. J. Geisler, N. K. Fontaine, R. P. Scott, and S. J. B. Yoo, “Demonstration of a flexible bandwidth optical transmitter/receiver system scalable to terahertz bandwidths,” IEEE Photonics J.3(6), 1013–1022 (2011). [CrossRef]
  11. N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and S. J. B. Yoo, “Real-time full-field arbitrary optical waveform measurement,” Nat. Photonics4(4), 248–254 (2010). [CrossRef]
  12. B. Kozicki, H. Takara, Y. Tsukishima, T. Yoshimatsu, K. Yonenaga, and M. Jinno, “Experimental demonstration of spectrum-sliced elastic optical path network (SLICE),” Opt. Express18(21), 22105–22118 (2010). [CrossRef] [PubMed]
  13. F. Paolucci, N. Sambo, F. Cugini, A. Giorgetti, and P. Castoldi, “Experimental demonstration of impairment-aware PCE for multi-bit-rate WSONs,” J. Opt. Commun. Networking3(8), 610–619 (2011). [CrossRef]
  14. Y. Lee, G. Bernstein, D. Li, and G. Martinelli, “A framework for the control of wavelength switched optical networks (WSON) with impairments,” IETF Internet Draft (Nov. 23, 2011).
  15. D. J. Geisler, N. K. Fontaine, T. He, R. P. Scott, L. Paraschis, J. P. Heritage, and S. J. B. Yoo, “Modulation-format agile, reconfigurable Tb/s transmitter based on optical arbitrary waveform generation,” Opt. Express17(18), 15911–15925 (2009). [CrossRef] [PubMed]
  16. T. Sakamoto, T. Kawanishi, and M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator,” Opt. Lett.32(11), 1515–1517 (2007). [CrossRef] [PubMed]
  17. C. Dorrer, C. R. Doerr, I. Kang, R. Ryf, J. Leuthold, and P. J. Winzer, “Measurement of eye diagrams and constellation diagrams of optical sources using linear optics and waveguide technology,” J. Lightwave Technol.23(1), 178–186 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited