OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 26 — Dec. 12, 2011
  • pp: B790–B798

Experimental validation of an analytical model for nonlinear propagation in uncompensated optical links

E. Torrengo, R. Cigliutti, G. Bosco, A. Carena, V. Curri, P. Poggiolini, A. Nespola, D. Zeolla, and F. Forghieri  »View Author Affiliations


Optics Express, Vol. 19, Issue 26, pp. B790-B798 (2011)
http://dx.doi.org/10.1364/OE.19.00B790


View Full Text Article

Enhanced HTML    Acrobat PDF (858 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Link design for optical communication systems requires accurate modeling of nonlinear propagation in fibers. This topic has been widely analyzed in last decades with partial successes in special conditions, but without a comprehensive solution. Since the introduction of coherent detection with electronic signal processing the scenario completely changed because this category of systems shows better performances in links without in-line dispersion management. This change to uncompensated transmission allowed to modify the approach in the study of nonlinear fiber propagation and in recent years a series of promising analytical models have been proposed. In this paper, we present an experimental validation over different fiber types of an analytical model for nonlinear propagation over uncompensated optical transmission links. Considering an ultra-dense WDM system, we transmitted ten 120-Gb/s PM-QPSK signals over a multi-span system probing different fiber types: SSMF, PSCF and NZDSF. A good matching was found in all cases showing the potential of the analytical model for accurate performance estimation that could lead to powerful tools for link design.

© 2011 OSA

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(060.2330) Fiber optics and optical communications : Fiber optics communications

ToC Category:
Transmission Systems and Network Elements

History
Original Manuscript: September 30, 2011
Revised Manuscript: November 16, 2011
Manuscript Accepted: November 16, 2011
Published: December 6, 2011

Virtual Issues
European Conference on Optical Communication 2011 (2011) Optics Express

Citation
E. Torrengo, R. Cigliutti, G. Bosco, A. Carena, V. Curri, P. Poggiolini, A. Nespola, D. Zeolla, and F. Forghieri, "Experimental validation of an analytical model for nonlinear propagation in uncompensated optical links," Opt. Express 19, B790-B798 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-26-B790


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, 2007).
  2. D. Marcuse, C. R. Manyuk, and P. K. A. Wai, “Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence,” J. Lightwave Technol.15(9), 1735–1746 (1997). [CrossRef]
  3. V. Curri, P. Poggiolini, A. Carena, and F. Forghieri, “Dispersion compensation and mitigation of nonlinear effects in 111-Gb/s WDM coherent PM-QPSK systems,” IEEE Photon. Technol. Lett.20(17), 1473–1475 (2008). [CrossRef]
  4. M. S. Alfiad, D. van den Borne, T. Wuth, M. Kuschnerov, and H. de Waardt, “On the tolerance of 111-Gb/s POLMUX-RZ-DQPSK to nonlinear transmission effects,” J. Lightwave Technol.29(2), 162–170 (2011). [CrossRef]
  5. P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of non-linear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett.23(11), 742–744 (2011). [CrossRef]
  6. M. Nazarathy, J. Khurgin, R. Weidenfeld, Y. Meiman, P. Cho, R. Noe, I. Shpantzer, and V. Karagodsky, “Phased-array cancellation of nonlinear FWM in coherent OFDM dispersive multi-span links,” Opt. Express16(20), 15777–15810 (2008). [CrossRef] [PubMed]
  7. B. Goebel, B. Fesl, L. D. Coelho, and N. Hanik, “On the effect of FWM in coherent optical OFDM systems,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JWA58.
  8. X. Chen and W. Shieh, “Closed-form expressions for nonlinear transmission performance of densely spaced coherent optical OFDM systems,” Opt. Express18(18), 19039–19054 (2010). [CrossRef] [PubMed]
  9. H. Louchet, A. Hodzic, and K. Petermann, “Analytical model for the performance evaluation of DWDM transmission systems,” IEEE Photon. Technol. Lett.15(9), 1219–1221 (2003). [CrossRef]
  10. J. Tang, “A comparison study of the Shannon channel capacity of various nonlinear optical fibers,” J. Lightwave Technol.24(5), 2070–2075 (2006). [CrossRef]
  11. P. Poggiolini, G. Bosco, A. Carena, V. Curri, and F. Forgheri, “A simple and accurate model for non-linear propagation effects in uncompensated coherent transmission links,” in 2011 13th International Conference on Transparent Optical Networks (ICTON) (2011), paper We.B1.3.
  12. A. Carena, V. Curri, G. Bosco, P. Poggiolini, and F. Forghieri, “Modeling of the impact of non-linear propagation effects in uncompensated optical coherent transmission links,” J. Lightwave Technol. ((submitted to).
  13. E. Torrengo, R. Cigliutti, G. Bosco, A. Carena, V. Curri, P. Poggiolini, A. Nespola, D. Zeolla, and F. Forghieri, “Experimental validation of an analytical model for nonlinear propagation in uncompensated optical links,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper We.7.B.2.
  14. G. Bosco, A. Carena, R. Cigliutti, V. Curri, P. Poggiolini, and F. Forghieri, “Performance prediction for WDM PM-QPSK transmission over uncompensated links,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThO7.
  15. E. Grellier and A. Bononi, “Quality parameter for coherent transmissions with Gaussian-distributed nonlinear noise,” Opt. Express19(13), 12781–12788 (2011). [CrossRef] [PubMed]
  16. S. Benedetto and E. Biglieri, Principles of Digital Transmission: with Wireless Applications (Kluwer, New York, 1999).
  17. G. Bosco, R. Cigliutti, E. Torrengo, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Joint DGD, PDL and chromatic dispersion estimation in ultra-long-haul WDM transmission experiments with coherent receivers,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), paper Th.10.A.2.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited