OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 26 — Dec. 12, 2011
  • pp: B81–B89

Electronic dispersion pre-compensation for 10.709-Gb/s using a look-up table and a directly modulated laser

Abdullah S. Karar, Mauricio Yañez, Ying Jiang, John C. Cartledge, James Harley, and Kim Roberts  »View Author Affiliations

Optics Express, Vol. 19, Issue 26, pp. B81-B89 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2212 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel electronic dispersion pre-compensation scheme for a directly modulated laser is described and experimentally demonstrated for transmission distances beyond 200 km using a low-cost laser packaged for 2.5-Gb/s while operated at 10.709-Gb/s. A single look-up-table (LUT) for the drive current is designed to mitigate the effects of fiber dispersion, the intrinsic nonlinear modulation response of the laser, and the laser package. Experimental results show that an 11-bit LUT can compensate the dispersion of 202 km of standard single mode fiber with a required optical-signal-to-noise-ratio of 18.61 dB at a bit error ratio of 3.8 × 10−3.

© 2011 OSA

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(140.5960) Lasers and laser optics : Semiconductor lasers

ToC Category:
Subsystems for Optical Networks

Original Manuscript: September 27, 2011
Manuscript Accepted: October 18, 2011
Published: November 16, 2011

Virtual Issues
European Conference on Optical Communication 2011 (2011) Optics Express

Abdullah S. Karar, Mauricio Yañez, Ying Jiang, John C. Cartledge, James Harley, and Kim Roberts, "Electronic dispersion pre-compensation for 10.709-Gb/s using a look-up table and a directly modulated laser," Opt. Express 19, B81-B89 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1.55-µm directly modulate signal over 100 km of negative dispersion fiber,” IEEE Photon. Technol. Lett. 13(7), 735–737 (2001). [CrossRef]
  2. B. Wedding, “Analysis of fibre transfer function and determination of receiver frequency response for dispersion supported transmission,” Electron. Lett. 30(1), 58–59 (1994). [CrossRef]
  3. D. Mahgerefteh, Y. Matsui, C. Liao, B. Johnson, D. Walker, X. Zheng, Z. Fan, K. McCallion, and P. Tayebati, “Error-free 250 km transmission in standard fibre using compact 10 Gbit/s chirp-managed directly modulated lasers (CML) at 1550 nm,” Electron. Lett. 41(9), 543–544 (2005). [CrossRef]
  4. J. McNicol, M. O’Sullivan, K. Roberts, A. Comeau, D. McGhan, and L. Strawczynski, “Electrical domain compensation of optical dispersion,” Proc. Optical Fiber Communications Conference, OThJ3 (2005).
  5. Y. Jiang, X. Tang, J. C. Cartledge, and K. Roberts, “Electronic pre-compensation of narrow optical filtering for OOK, DPSK and DQPSK modulation formats,” J. Lightwave Technol. 27(16), 3689–3698 (2009). [CrossRef]
  6. S. Warm, C.-A. Bunge, T. Wuth, and K. Petermann, “Electronic dispersion precompensation with a 10-Gb/s directly modulated laser,” IEEE Photon. Technol. Lett. 21(15), 1090–1092 (2009). [CrossRef]
  7. A. S. Karar, M. Yañez, Y. Jiang, J. C. Cartledge, J. Harley, and K. Roberts, “Electronic dispersion pre-compensation using a directly modulated laser at 10.7-Gb/s,” Proc. European Conference on Optical Communication, We.7.A.3 (2011).
  8. A. S. Karar, J. C. Cartledge, J. Harley, and K. Roberts, “Electronic pre-compensation for a 10.7-Gb/s system employing a directly modulated laser,” J. Lightwave Technol. 29(13), 2069–2076 (2011). [CrossRef]
  9. J. E. Bowers, B. R. Hemenway, A. H. Gnauck, and D. P. Wilt, “High-speed InGaAsP constricted-mesa lasers,” IEEE J. Quantum Electron. 22(6), 833–844 (1986). [CrossRef]
  10. R. I. Killey, P. M. Watts, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion,” Proc. Optical Fiber Communications Conference, OWB3 (2006).
  11. R. Waegemans, S. Herbst, L. Holbein, P. Watts, P. Bayvel, C. Fürst, and R. I. Killey, “10.7 Gb/s electronic predistortion transmitter using commercial FPGAs and D/A converters implementing real-time DSP for chromatic dispersion and SPM compensation,” Opt. Express 17(10), 8630–8640 (2009). [CrossRef] [PubMed]
  12. E. Forestieri, “Evaluating the error probability in lightwave systems with chromatic dispersion, arbitrary pulse shape and pre- and postdetection filtering,” J. Lightwave Technol. 18(11), 1493–1503 (2000). [CrossRef]
  13. A. S. Karar, Y. Jiang, J. C. Cartledge, J. Harley, D. J. Krause, and K. Roberts, “Electronic precompensation of nonlinear distortion in a 10 Gb/s 4-ary ASK directly modulated laser,” Proc. European Conference on Optical Communication, P3.03 (2010).
  14. A. S. Karar, J. C. Cartledge, J. Harley and K. Roberts, “Reducing the complexity of electronic pre-compensation for the nonlinear distortions in a directly modulated laser,” Proc. Signal Processing in Photonic Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper SPWA2 (2011).
  15. I. Papagiannakis, D. Klonidis, A. N. Birbas, J. Kikidis, and I. Tomkos, “Performance improvement for low-cost 2.5-Gb/s rated DML sources operated at 10 Gb/s,” IEEE Photon. Technol. Lett. 20(23), 1983–1985 (2008). [CrossRef]
  16. J. C. Cartledge and R. C. Srinivasan, “Extraction of DFB laser rate equation parameters for system simulation purposes,” J. Lightwave Technol. 15(5), 852–860 (1997). [CrossRef]
  17. P. J. Winzer and R.-J. Essiambre, “Electronic pre-distortion for advance modulation formats,” Proc. European Conference on Optical Communication, Tu 4.2.2 (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited