OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 26 — Dec. 12, 2011
  • pp: B848–B861

Polymer microstructured optical fibers for terahertz wave guiding

Bora Ung, Anna Mazhorova, Alexandre Dupuis, Mathieu Rozé, and Maksim Skorobogatiy  »View Author Affiliations


Optics Express, Vol. 19, Issue 26, pp. B848-B861 (2011)
http://dx.doi.org/10.1364/OE.19.00B848


View Full Text Article

Enhanced HTML    Acrobat PDF (2535 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We outline the most recent technological advancements in the design, fabrication and characterization of polymer microstructured optical fibers (MOFs) for applications in the terahertz waveband. Focusing on specific experimental demonstrations, we show that polymer optical fibers provide a very flexible route towards THz wave guiding. Crucial incentives include the large variety of the low-cost and relatively low absorption loss polymers, the facile fiber preform fabrication by molding, drilling, stacking and extrusion, and finally, the simple fabrication through fiber drawing at low forming temperatures.

© 2011 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(160.5470) Materials : Polymers
(060.4005) Fiber optics and optical communications : Microstructured fibers
(300.6495) Spectroscopy : Spectroscopy, teraherz
(110.6795) Imaging systems : Terahertz imaging

ToC Category:
Fibers, Fiber Devices, and Amplifiers

History
Original Manuscript: September 30, 2011
Revised Manuscript: November 18, 2011
Manuscript Accepted: November 22, 2011
Published: December 7, 2011

Virtual Issues
(2011) Advances in Optics and Photonics
European Conference on Optical Communication 2011 (2011) Optics Express

Citation
Bora Ung, Anna Mazhorova, Alexandre Dupuis, Mathieu Rozé, and Maksim Skorobogatiy, "Polymer microstructured optical fibers for terahertz wave guiding," Opt. Express 19, B848-B861 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-26-B848


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Imeshev, M. E. Fermann, K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, D. Bliss, and C. Lynch, “High-power source of THz radiation based on orientation-patterned GaAs pumped by a fiber laser,” Opt. Express 14(10), 4439–4444 (2006). [CrossRef] [PubMed]
  2. M. Tang, H. Minamide, Y. Wang, T. Notake, S. Ohno, and H. Ito, “Dual-wavelength single-crystal double-pass KTP optical parametric oscillator and its application in terahertz wave generation,” Opt. Lett. 35(10), 1698–1700 (2010). [CrossRef] [PubMed]
  3. Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, J. B. Stark, Q. Wu, X. C. Zhang, and J. F. Federici, “Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection,” Appl. Phys. Lett. 73(4), 444–446 (1998). [CrossRef]
  4. N. Karpowicz, J. Chen, T. Tongue, and X.-C. Zhang, “Coherent millimetre wave to mid-infrared measurements with continuous bandwidth reaching 40 THz,” Electron. Lett. 44(8), 544–545 (2008). [CrossRef]
  5. C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49(19), E48–E57 (2010). [CrossRef] [PubMed]
  6. S. Zhong, Y.-C. Shen, L. Ho, R. K. May, J. A. Zeitler, M. Evans, P. F. Taday, M. Pepper, T. Rades, K. C. Gordon, R. Müller, and P. Kleinebudde, “Non-destructive quantification of pharmaceutical tablet coatings using terahertz pulsed imaging and optical coherence tomography,” Opt. Lasers Eng. 49(3), 361–365 (2011). [CrossRef]
  7. G. J. Wilmink, B. L. Ibey, T. Tongue, B. Schulkin, N. Laman, X. G. Peralta, C. C. Roth, C. Z. Cerna, B. D. Rivest, J. E. Grundt, and W. P. Roach, “Development of a compact terahertz time-domain spectrometer for the measurement of the optical properties of biological tissues,” J. Biomed. Opt. 16(4), 047006 (2011). [CrossRef] [PubMed]
  8. Y.-S. Jin, G.-J. Kim, and S.-Y. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).
  9. A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogatiy, “Transmission measurements of hollow-core THz Bragg Fibers,” J. Opt. Soc. Am. B 28(4), 896–907 (2011). [CrossRef]
  10. P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011). [CrossRef]
  11. M. Skorobogatiy and J. Yang, Fundamentals of Photonic Crystal Guiding (Cambridge University Press, 2009).
  12. L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31(3), 308–310 (2006). [CrossRef] [PubMed]
  13. J.-Y. Lu, C.-C. Kuo, C.-M. Chiu, H.-W. Chen, Y.-J. Hwang, C.-L. Pan, and C.-K. Sun, “THz interferometric imaging using subwavelength plastic fiber based THz endoscopes,” Opt. Express 16(4), 2494–2501 (2008). [CrossRef] [PubMed]
  14. C.-M. Chiu, H.-W. Chen, Y.-R. Huang, Y.-J. Hwang, W.-J. Lee, H.-Y. Huang, and C.-K. Sun, “All-terahertz fiber-scanning near-field microscopy,” Opt. Lett. 34(7), 1084–1086 (2009). [CrossRef] [PubMed]
  15. M. Nagel, A. Marchewka, and H. Kurz, “Low-index discontinuity terahertz waveguides,” Opt. Express 14(21), 9944–9954 (2006). [CrossRef] [PubMed]
  16. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett. 92(7), 071101 (2008). [CrossRef]
  17. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express 16(9), 6340–6351 (2008). [CrossRef] [PubMed]
  18. A. Dupuis, J.-F. Allard, D. Morris, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method,” Opt. Express 17(10), 8012–8028 (2009). [CrossRef] [PubMed]
  19. A. Dupuis, A. Mazhorova, F. Désévédavy, M. Rozé, and M. Skorobogatiy, “Spectral characterization of porous dielectric subwavelength THz fibers fabricated using a microstructured molding technique,” Opt. Express 18(13), 13813–13828 (2010). [CrossRef] [PubMed]
  20. S. Atakaramians, S. Afshar V, H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express 17(16), 14053–15062 (2009). [CrossRef] [PubMed]
  21. H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express 15(23), 15086–15092 (2007). [CrossRef] [PubMed]
  22. K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009). [CrossRef] [PubMed]
  23. O. Mitrofanov and J. A. Harrington, “Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion,” Opt. Express 18(3), 1898–1903 (2010). [CrossRef] [PubMed]
  24. M. Rozé, B. Ung, A. Mazhorova, M. Walther, and M. Skorobogatiy, “Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance,” Opt. Express 19(10), 9127–9138 (2011). [CrossRef] [PubMed]
  25. C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18(1), 309–322 (2010). [CrossRef] [PubMed]
  26. S. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. Engeness, M. Soljacic, S. Jacobs, J. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9(13), 748–779 (2001). [CrossRef] [PubMed]
  27. M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90(11), 113514 (2007). [CrossRef]
  28. B. Ung, A. Dupuis, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “High-refractive-index composite materials for terahertz waveguides: trade-off between index contrast and absorption loss,” J. Opt. Soc. Am. B 28(4), 917–921 (2011). [CrossRef]
  29. K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Porous-core honeycomb bandgap THz fiber,” Opt. Lett. 36(5), 666–668 (2011). [CrossRef] [PubMed]
  30. S. Atakaramians, S. V. Afshar, M. Nagel, H. K. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent fields for characterization of porous terahertz fibers,” Appl. Phys. Lett. 98, 121104 (2011).
  31. A. Dupuis, Dielectric THz waveguides (PhD thesis, Ecole Polytechnique de Montréal, 2010).
  32. O. Mitrofanov, T. Tan, P. R. Mark, B. Bowden, and J. A. Harrington, “Waveguide mode imaging and dispersion analysis with terahertz near-field microscopy,” Appl. Phys. Lett. 94(17), 171104 (2009). [CrossRef]
  33. J. R. Knab, A. J. L. Adam, R. Chakkittakandy, and P. C. M. Planken, “Terahertz near-field microspectroscopy,” Appl. Phys. Lett. 97(3), 031115 (2010). [CrossRef]
  34. A. Bitzer, A. Ortner, and M. Walther, “Terahertz near-field microscopy with subwavelength spatial resolution based on photoconductive antennas,” Appl. Opt. 49(19), E1–E6 (2010). [CrossRef] [PubMed]
  35. M. Walther and A. Bitzer, “Electromagnetic Wave Propagation Close to Microstructures Studied by Time and Phase-Resolved THz Near-Field Imaging,” J. Infrared Millim. Terahz. Waves 32(8-9), 1020–1030 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited