OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 26 — Dec. 12, 2011
  • pp: B90–B95

Wide temperature range 0 < T < 85 °C narrow linewidth discrete mode laser diodes for coherent communications applications

John O’Carroll, Richard Phelan, Brian Kelly, Diarmuid Byrne, Liam P. Barry, and James O’Gorman  »View Author Affiliations

Optics Express, Vol. 19, Issue 26, pp. B90-B95 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1498 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Cost effective lasers meeting the linewidth requirements for coherent communication systems are a key element in reducing the overall cost of future coherent systems. We report on monolithic devices with linewidths as low as 138 kHz which operate in a narrow linewidth, single wavelength mode with high sidemode suppression ratio over a wide temperature tuning range of −10 °C < T < 110 °C. A linewidth variation of only 23 kHz was measured at a constant emitted power of 4 mW as the device temperature is varied in the range 0 °C < T < 85 °C.

© 2011 OSA

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(140.3570) Lasers and laser optics : Lasers, single-mode

ToC Category:
Waveguide and Opto-Electronic Devices

Original Manuscript: October 3, 2011
Revised Manuscript: October 28, 2011
Manuscript Accepted: October 28, 2011
Published: November 16, 2011

Virtual Issues
European Conference on Optical Communication 2011 (2011) Optics Express

John O’Carroll, Richard Phelan, Brian Kelly, Diarmuid Byrne, Liam P. Barry, and James O’Gorman, "Wide temperature range 0 < T < 85 °C narrow linewidth discrete mode laser diodes for coherent communications applications," Opt. Express 19, B90-B95 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Roberts, M. O'Sullivan, K.-T. Wu, S. Han, A. Awadalla, D. J. Krause, and C. Laperle, “Performance of Dual-Polarization QPSK for Optical Transport Systems,” J. Lightwave Technol. 27(16), 3546–3559 (2009). [CrossRef]
  2. K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag. 48(7), 62–69 (2010). [CrossRef]
  3. D. Lavery, M. Ionescu, S. Makovejs, E. Torrengo, and S. J. Savory, “A long-reach ultra-dense 10 Gbit/s WDM-PON using a digital coherent receiver,” Opt. Express 18(25), 25855–25860 (2010). [CrossRef] [PubMed]
  4. M. Seimetz, “Laser Linewidth Limitations for Optical Systems with High-Order Modulation Employing Feed Forward Digital Carrier Phase Estimation,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OTuM2. http://www.opticsinfobase.org/abstract.cfm?uri=OFC-2008-OTuM2
  5. T. Pfau, S. Hoffmann, and R. Noe, “Hardware-Efficient Coherent Digital Receiver Concept With Feedforward Carrier Recovery for M -QAM Constellations,” J. Lightwave Technol. 27(8), 989–999 (2009). [CrossRef]
  6. C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, B. Kelly, M. Rensing, J. O’Carroll, R. Phelan, P. Anandarajah, P. Perry, L. P. Barry, and J. O’Gorman, “Discrete Mode Lasers for Communication Applications,” IET Optoelectron. 3(1), 1–17 (2009). [CrossRef]
  7. R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010). [CrossRef]
  8. P. Frascella, S. Sygletos, F. C. Gunning, R. Weerasuriya, L. Gruner-Nielsen, R. Phelan, J. O'Gorman, and A. D. Ellis, “DPSK Signal Regeneration With a Dual-Pump Nondegenerate Phase-Sensitive Amplifier,” IEEE Photon. Technol. Lett. 23(8), 516–518 (2011). [CrossRef]
  9. C. E. Zah, R. Bhat, B. N. Pathak, F. Favire, W. Lin, M. C. Wang, N. C. Andreadakis, D. M. Hwang, M. A. Koza, T. P. Lee, Z. Wang, D. Darby, D. Flanders, and J. J. Hsieh, “High-performance uncooled 1.3-µm AlxGayIn1-x-yAs/InP strained layer quantum-well lasers for subscriber loop applications,” IEEE J. Quantum Electron. 30(2), 511–523 (1994). [CrossRef]
  10. C. J. Piprik, J. K. White, and A. J. Spring Thorpe, “What limits the maximum output power of long-wavelength AlGaInAs/InP laser diodes?” IEEE J. Quantum Electron. 38(9), 1253–1259 (2002).
  11. J. Patchell, D. Jones, B. Kelly, and J. O'Gorman, “Specifying the wavelength and temperature tuning range of a Fabry-Perot laser containing refractive index perturbations,” Proc. SPIE 5825, 1–13 (2005). [CrossRef]
  12. R. Phelan, B. Kelly, J. O'Carroll, C. Herbert, A. Duke, and J. O'Gorman, “- 40°C < T < 95°C mode-hop free operation of an uncooled AlGaInAs-MQW discrete-mode laser diode with emission at λ = 1.3 μm,” Electron. Lett. 45(1), 43–45 (2009). [CrossRef]
  13. T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel Method for High Resolution Measurement of Laser Output Spectrum,” Electron. Lett. 16(16), 630–632 (1980). [CrossRef]
  14. M. O. van Deventer, P. Spano, and S. K. Nielsen, “Comparison of DFB Laser Linewidth Measurement Techniques Results from COST 215 Round Robin,” Electron. Lett. 26(24), 2018–2020 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited