OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 26 — Dec. 12, 2011
  • pp: B915–B930

Impact of nonlinear and polarization effects in coherent systems

Chongjin Xie  »View Author Affiliations


Optics Express, Vol. 19, Issue 26, pp. B915-B930 (2011)
http://dx.doi.org/10.1364/OE.19.00B915


View Full Text Article

Enhanced HTML    Acrobat PDF (1394 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Coherent detection with digital signal processing (DSP) significantly changes the ways impairments are managed in optical communication systems. In this paper, we review the recent advances in understanding the impact of fiber nonlinearities, polarization-mode dispersion (PMD), and polarization-dependent loss (PDL) in coherent optical communication systems. We first discuss nonlinear transmission performance of three coherent optical communication systems, homogeneous polarization-division-multiplexed (PDM) quadrature-phase-shift-keying (QPSK), hybrid PDM-QPSK and on/off keying (OOK), and PDM 16-ary quadrature-amplitude modulation (QAM) systems. We show that while the dominant nonlinear effects in coherent optical communication systems without optical dispersion compensators (ODCs) are intra-channel nonlinearities, the dominant nonlinear effects in dispersion-managed (DM) systems with inline dispersion compensation fiber (DCF) are different when different modulation formats are used. In DM coherent optical communication systems using modulation formats of constant amplitude, the dominant nonlinear effect is nonlinear polarization scattering induced by cross-polarization modulation (XPolM), whereas when modulation formats of non-constant amplitude are used, the impact of inter-channel cross-phase modulation (XPM) is much larger than XPolM. We then describe the effects of PMD and PDL in coherent systems. We show that although in principle PMD can be completely compensated in a coherent optical receiver, a real coherent receiver has limited tolerance to PMD due to hardware limitations. Two PDL models used to evaluate PDL impairments are discussed. We find that a simple lumped model significantly over-estimates PDL impairments and show that a distributed model has to be used in order to accurately evaluate PDL impairments. Finally, we apply system outage considerations to coherent systems, taking into account the statistics of polarization effects in fiber.

© 2011 OSA

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers

ToC Category:
Transmission Systems and Network Elements

History
Original Manuscript: October 20, 2011
Revised Manuscript: November 28, 2011
Manuscript Accepted: December 5, 2011
Published: December 8, 2011

Virtual Issues
European Conference on Optical Communication 2011 (2011) Optics Express

Citation
Chongjin Xie, "Impact of nonlinear and polarization effects in coherent systems," Opt. Express 19, B915-B930 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-26-B915


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Kimura, “Coherent Optical Fiber Transmission,” J. Lightwave Technol.5(4), 414–428 (1987). [CrossRef]
  2. A. H. Gnauck, G. Charlet, P. Tran, P. J. Winzer, C. R. Doerr, J. C. Centanni, E. C. Burrows, T. Kawanishi, T. Sakamoto, and K. Higuma, “25.6-Tb/s C+L-Band Transmission of Polarization-Multiplexed RZ-DQPSK Signals,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper PDP19.
  3. R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity Limits of Optical Fiber Networks,” J. Lightwave Technol.28(4), 662–701 (2010). [CrossRef]
  4. P. J. Winzer, “Beyond 100G ethernet,” IEEE Commun. Mag.48(7), 26–30 (2010). [CrossRef]
  5. K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and Beyond with Digital Coherent Signal Processing,” IEEE Commun. Mag.48(7), 62–69 (2010). [CrossRef]
  6. V. Curri, P. Poggiolini, A. Carena, and F. Forghieri, “Dispersion compensation and mitigation of nonlinear effects in 111-Gb/s WDM coherent PM-QPSK systems,” IEEE Photon. Technol. Lett.20(17), 1473–1475 (2008). [CrossRef]
  7. C. Xie, “Inter-channel nonlinearities in coherent polarization-division-multiplexed quadrature-phase-shift-keying systems,” IEEE Photon. Technol. Lett.21(5), 274–276 (2009). [CrossRef]
  8. C. Xie, “WDM coherent PDM-QPSK systems with and without inline optical dispersion compensation,” Opt. Express17(6), 4815–4823 (2009). [CrossRef] [PubMed]
  9. C. Xie, “Dispersion management in WDM coherent PDM-QPSK systems,” in Proceedings of European Conference on Optical Communication (Vienna, Austria, 2009), paper 9.4.3.
  10. C. Xie, “Nonlinear Polarization Effects and Mitigation in Polarization Multiplexed Transmission,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2010), paper OWE1.
  11. G. Charlet, J. Renaudier, M. Salsi, H. Mardoyan, P. Tran, and S. Bigo, “Efficient Mitigation of Fiber Impairments in an Ultra-Long Haul Transmission of 40Gbit/s Polarization-Multiplexed Data by Digital Processing in a Coherent Receiver,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper PDP17.
  12. N. Kaneda and A. Leven, “Coherent polarization-division-multiplexed QPSK receiver with fractionally spaced CMA for PMD compensation,” IEEE Photon. Technol. Lett.21(4), 203–205 (2009). [CrossRef]
  13. N. Mantzoukis, A. Vgenis, C. S. Petrou, I. Roudas, T. Kamalakis, and L. Raptis, “Design guidelines for electronic PMD equalizers used in coherent PDM QPSK systems,” in Proceedings of European Conference on Optical Communication, (Torino, Italy, 2010), paper P4.16.
  14. C. Xie, “Polarization-Mode-Dispersion Impairments in 112-Gb/s PDM-QPSK Coherent Systems,” in Proceedings of European Conference on Optical Communication, (Torino, Italy, 2010), paper Th.10.E.6.
  15. P. Serena, N. Rossi, and A. Bononi, “Nonlinear penalty reduction induced by PMD in 112 Gbit/s WDM PDM-QPSK coherent systems,” in Proceedings of European Conference on Optical Communication (Vienna, Austria, 2009), paper 10.4.3.
  16. O. Bertran-Pardo, J. Renaudier, G. Charlet, P. Tran, H. Mardoyan, M. Bertolini, M. Salsi, and S. Bigo, “Demonstration of the benefits brought by PMD in polarization-multiplexed systems,” in Proceedings of European Conference on Optical Communication (Torino, Italy, 2010), paper Th.10.E.4.
  17. C. Xia, J. F. da Silva Pina, A. Striegler, and D. van den Borne, “PMD-induced nonlinear penalty reduction in coherent polarization-multiplexed QPSK transmission,” in Proceedings of European Conference on Optical Communication (Torino, Italy, 2010), paper Th.10.E.5.
  18. A. Bononi, N. Rossi, and P. Serena, “Transmission Limitations due to Fiber Nonlinearity,”, ” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2011), paper OWO7.
  19. C. Xie, “Impact of nonlinear and polarization effects on coherent systems,” in Proceedings of European Conference on Optical Communication (Geneva, Switzerland, 2011), paper We.8.B.1.
  20. C. Xie and R.-J. Essiambre, “Electronic Nonlinearity Compensation in 112-Gb/s PDM-QPSK Optical Coherent Transmission Systems,” in Proceedings of European Conference on Optical Communication (Torino, Italy, 2010), paper Mo.1.C.1.
  21. G. Li, E. Mateo, and L. Zhu, “Compensation of Nonlinear Effects Using Digital Coherent Receivers,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2011), paper OWW1.
  22. E. Yamazaki, A. Sano, T. Kobayashi, E. Yoshida, and Y. Miyamoto, “Mitigation of Nonlinearities in Optical Transmission Systems,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2011), paper OThF1.
  23. R.-J. Essiambre, B. Mikkelsen, and G. Raybon, “Intrachannel Cross-Phase Modulation and Four-Wave Mixing in High-Speed TDM Systems,” Electron. Lett.35(18), 1576–1578 (1999). [CrossRef]
  24. P. V. Mamyshev and L. F. Mollenauer, “Soliton collisions in wavelength-division-multiplexed dispersion-managed systems,” Opt. Lett.24(7), 448–450 (1999). [CrossRef] [PubMed]
  25. C. Xie, “Inter-channel nonlinearities in hybrid OOK and coherent PDM-QPSK transmission systems with dispersion management,” in Proceeding IEEE Photonic Society Summer Topicals (Cancun, Mexico, 2010), paper TuA.3.2.
  26. D. van den Borne, C. R. S. Fludger, T. Duthel, T. Wuth, E. D. Schmidt, C. Schulien, E. Gottwald, G. D. Khoe, and H. de Waardt, “Carrier phase estimation for coherent equalization of 43-Gb/s POLMUXNRZ-DQPSK transmission with 10.7-Gb/s NRZ neighbours,” in Proceedings of European Conference on Optical Communication, (Berlin, Germany, 2007), paper 7.2.3, 2007.
  27. C. Xie, “Fiber Nonlinearities in 16QAM Transmission Systems,” in Proceedings of European Conference on Optical Communication, (Geneva, Switzerland, 2011), paper We.7.B.6.
  28. T. Duthel, C. R. S. Fludger, J. Geyer, and S. Schulien, “Impact of polarisation dependent loss on coherent POLMUX-NRZ-DQPSK,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper OThU5.
  29. M. Shtaif, “Performance degradation in coherent polarization multiplexed systems as a result of polarization dependent loss,” Opt. Express16(18), 13918–13932 (2008). [CrossRef] [PubMed]
  30. C. Xie, “Polarization-Dependent Loss Induced Penalties in PDM-QPSK Coherent Optical Communication Systems,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2010), paper OWE6.
  31. D. Marcuse, C. R. Manyuk, and P. K. A. Wai, “Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence,” J. Lightwave Technol.15(9), 1735–1746 (1997). [CrossRef]
  32. L. F. Mollenauer, J. P. Gordon, and F. Heismann, “Polarization scattering by soliton-soliton collisions,” Opt. Lett.20(20), 2060–2062 (1995). [CrossRef] [PubMed]
  33. J. Renaudier, O. Bertran-Pardo, G. Charlet, M. Salsi, M. Bertolini, P. Tran, H. Mardoyan, and S. Bigo, “On the Required Number of WDM Channels When Assessing Performance of 100Gb/s Coherent PDM-QPSK Overlaying Legacy Systems,” in Proceedings of European Conference on Optical Communication (Vienna, Austria, 2009), paper 3.4.5.
  34. C. Xia and D. van den Borne, “Impact of the Channel Count on the Nonlinear Tolerance in Coherently-detected POLMUX-QPSK modulation,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2011), paper OWO1.
  35. L. K. Wickham, R.-J. Essiambre, A. H. Gnauck, P. J. Winzer, and A. R. Chraplyvy, “Bit pattern length dependence of intrachannel nonlinearities in pseudolinear transmission,” IEEE Photon. Technol. Lett.16(6), 1591–1593 (2004). [CrossRef]
  36. O. Bertran-Pardo, J. Renaudier, G. Charlet, H. Mardoyan, P. Tran, and S. Bigo, “Nonlinearity Limitations When Mixing 40-Gb/s Coherent PDM-QPSK Channels With Preexisting 10-Gb/s NRZ Channels,” IEEE Photon. Technol. Lett.20(15), 1314–1316 (2008). [CrossRef]
  37. I. Fatadin, D. Ives, and S. J. Savory, “Blind Equalization and Carrier Phase Recovery in a 16-QAM Optical Coherent System,” J. Lightwave Technol.27(15), 3042–3049 (2009). [CrossRef]
  38. H. Kogelnik, R. M. Jopson, and L. E. Nelson, Optical Fiber Telecommunications IV B, I. Kaminov and T. Li, eds. (Academic Press, 2002), Chap. 15.
  39. C. Xie and L. Möller, “The accuracy assessment of different polarization mode dispersion models,” Opt. Fiber Technol.12(2), 101–109 (2006). [CrossRef]
  40. Z. Wang, C. Xie, and X. Ren, “PMD and PDL impairments in polarization division multiplexing signals with direct detection,” Opt. Express17(10), 7993–8004 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited