OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 27 — Dec. 19, 2011
  • pp: 25843–25853

Parametric plasmonics and second harmonic generation in particle chains

Ben Z. Steinberg  »View Author Affiliations


Optics Express, Vol. 19, Issue 27, pp. 25843-25853 (2011)
http://dx.doi.org/10.1364/OE.19.025843


View Full Text Article

Enhanced HTML    Acrobat PDF (961 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Parametric optics and second harmonic generation in pure plasmonic particle chains are studied. By a proper design of the plasmonic particle geometry, the modes supported by the chain can achieve phase-matching conditions. Then the magnetic-field dependence of the plasmon electric susceptibility can provide the nonlinearity and the coupling mechanism leading to parametric processes, sum frequency and second harmonic generation. Hence, chains of plasmonic particles can support parametric optics and higher harmonic generation by using its own modes only. Since the second order nonlinearity involves both electric and magnetic fields, the SHG reported here is supported also by centrosymmetric particle chains.

© 2011 OSA

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Nonlinear Optics

History
Original Manuscript: June 13, 2011
Revised Manuscript: September 15, 2011
Manuscript Accepted: September 19, 2011
Published: December 5, 2011

Citation
Ben Z. Steinberg, "Parametric plasmonics and second harmonic generation in particle chains," Opt. Express 19, 25843-25853 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-27-25843


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett.23(17), 1331–1333 (1998). [CrossRef]
  2. S. A. Tretyakov and A. J. Viitanen, “Line of periodically arranged passive dipole scatterers,” Electrical Engineering82, 353–361 (2000). [CrossRef]
  3. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B62(24), R16356 (2000). [CrossRef]
  4. Andrea Alu and Nader Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B74, 205436 (2006). [CrossRef]
  5. D. V. Orden, Y. Fainman, and V. Lomakin, “Optical waves on nanoparticle chains coupled with surfaces,” Opt. Lett.34(4), 422–424 (2009). [CrossRef] [PubMed]
  6. D. V. Orden, Y. Fainman, and V. Lomakin, “Twisted chains of resonant particles: optical polarization control, waveguidance, and radiation,” Opt. Lett.35(15), 2579–2581 (2010). [CrossRef] [PubMed]
  7. Y. Hadad and Ben Z. Steinberg, “Magnetized spiral chains of plasmonic ellipsoids for one-way optical waveguides,” Phys. Rev. Lett.105, 233904 (2010). [CrossRef]
  8. Zi-jian Wu, Xi-kui Hu, Zi-yan Yu, Wei Hu, Fei Xu, and Yan-qing Lu, “Nonlinear plasmonic frequency conversion through quasiphase matching,” Phys. Rev. B82, 155107 (2010). [CrossRef]
  9. A. R. Davoyan, I. V. Shadrivov, and Y. S. Kivshar, “Quadratic phase matching in nonlinear plasmonic nanoscale waveguides,” Opt. Express17(22), 20063–20068 (2009). [CrossRef] [PubMed]
  10. G. Bachelier, I. R. Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Multipolar second-harmonic generation in noble metal nanoparticles,” J. Opt. Soc. Am. B25(6) 955–960 (2008). [CrossRef]
  11. Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, and J. Moloney, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B79, 235109 (2009). [CrossRef]
  12. H. Husu, J. Makitalo, J. Laukkanen, M. Kuittinen, and M. Kauranen, “Particle plasmon resonance in L-shaped gold nano-particles,” Opt. Express18(16), 16601–16606 (2010). [CrossRef] [PubMed]
  13. J. Nappa, G. Revillod, I. R. Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Electric dipole origin of the second harmonic generation of small metallic particles,” Phys. Rev. B71, 165407 (2005). [CrossRef]
  14. J. Shan, J. I. Dadap, I. Stiopkin, G. A. Reider, and T. F. Heinz, “Experimental study of optical second-harmonic scattering from spherical nanoparticles,” Phys. Rev. A73, 023819 (2006). [CrossRef]
  15. B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Letters7(5), 1251–1255 (2007). [CrossRef] [PubMed]
  16. S. Kujala, B. K. Canfield, and M. Kauranen, “Multipole interference of second harmonic optical radiation from gold nanoparticles,” Phys. Rev. Lett.98, 167403 (2007). [CrossRef] [PubMed]
  17. T. Utikel, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, and H. Giessen, “Towards the origin of the nonlinear response in hybrid plasmonic systems,” Phys. Rev. Lett.106, 133901 (2011). [CrossRef]
  18. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Whiley1999).
  19. S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B67, 205402 (2003). [CrossRef]
  20. A. H. Sihvola, Electromagnetic Mixing Formulas and Applications, Electromagnetic Waves Series (IEE1999). [CrossRef]
  21. Leonard Lewin, Polylogarithms and Associated Functions (Elsevier1981).
  22. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover1972).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited