OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 27 — Dec. 19, 2011
  • pp: 25935–25943

Urchin-aggregation inspired closely-packed hierarchical ZnO nanostructures for efficient light scattering

Yeong Hwan Ko and Jae Su Yu  »View Author Affiliations

Optics Express, Vol. 19, Issue 27, pp. 25935-25943 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1958 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We reported the enhancement of light scattering in the urchin-aggregation shaped closely-packed hierarchical ZnO nanostructures, fabricated by a simple and scalable process based on the hydrothermal method utilizing the silica microspheres monolayer as a two-dimensional periodic template. From theoretical predictions, the diffuse light scattering is closely related to the size of silica microspheres as light diffusion centers. Moreover, the ZnO nanorod arrays on silica microspheres monolayer provide the further enhancement of light scattering. The experimentally fabricated urchin-aggregation shaped ZnO nanostructures using silica microspheres of 970 nm indicated a high density of ZnO nanorods with a wide bending angle, which led to the largely increased photoluminescence intensity and a high transmittance haze ratio of > 70% in the wavelength range of 400-900 nm in keeping with a high total transmittance. The contact angles of a water droplet on the surface of the samples were also explored.

© 2011 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(220.2740) Optical design and fabrication : Geometric optical design
(310.1210) Thin films : Antireflection coatings

ToC Category:
Diffraction and Gratings

Original Manuscript: July 25, 2011
Revised Manuscript: November 18, 2011
Manuscript Accepted: November 21, 2011
Published: December 6, 2011

Yeong Hwan Ko and Jae Su Yu, "Urchin-aggregation inspired closely-packed hierarchical ZnO nanostructures for efficient light scattering," Opt. Express 19, 25935-25943 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. B. Djurišić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2(8-9), 944–961 (2006). [CrossRef] [PubMed]
  2. Q. Zhang, C. S. Dandeneau, X. Zhou, and G. Cao, “ZnO nanostructures for dye-sensitized solar cells,” Adv. Mater. 21(41), 4087–4108 (2009). [CrossRef]
  3. S. H. Ko, D. H. Lee, H. W. Kang, K. H. Nam, J. Y. Yeo, S. J. Hong, C. P. Grigoropoulos, and H. J. Sung, “Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell,” Nano Lett. 11(2), 666–671 (2011). [CrossRef] [PubMed]
  4. X. W. Sun, J. Z. Huang, J. X. Wang, and Z. Xu, “A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342 nm,” Nano Lett. 8(4), 1219–1223 (2008). [CrossRef] [PubMed]
  5. A. M. C. Ng, Y. Y. Xi, Y. F. Hsu, A. B. Djurišić, W. K. Chan, S. Gwo, H. L. Tam, K. W. Cheah, P. W. K. Fong, H. F. Lui, and C. Surya, “GaN/ZnO nanorod light emitting diodes with different emission spectra,” Nanotechnology 20(44), 445201 (2009). [CrossRef] [PubMed]
  6. Y. Li, F. D. Valle, M. Simonnet, I. Yamada, and J. J. Delaunay, “High-performance UV detector made of ultra-long ZnO bridging nanowires,” Nanotechnology 20(4), 045501 (2009). [CrossRef] [PubMed]
  7. Y. Y. Lin, C. W. Chen, W. C. Yen, W. F. Su, C. H. Ku, and J. J. Wu, “Near-ultraviolet photodetector based on hybrid polymer/zinc oxide nanorods by low-temperature solution processes,” Appl. Phys. Lett. 92(23), 233301 (2008). [CrossRef]
  8. J. H. Kim and K. J. Yong, “Mechanism study of ZnO nanorod-bundle sensors for H2S gas sensing,” J. Phys. Chem. C 115(15), 7218–7224 (2011). [CrossRef]
  9. J. Y. Park, D. E. Song, and S. S. Kim, “An approach to fabricating chemical sensors based on ZnO nanorod arrays,” Nanotechnology 19(10), 105503 (2008). [CrossRef] [PubMed]
  10. Z. Shao, L. Wen, D. Wu, X. Zhang, S. Chang, and S. Qin, “Influence of carrier concentration on piezoelectric potential in a bent ZnO nanorod,” J. Appl. Phys. 108(12), 124312 (2010). [CrossRef]
  11. M. Y. Choi, D. H. Choi, M. J. Jin, I. S. Kim, S. H. Kim, J. Y. Choi, S. Y. Lee, J. M. Kim, and S. W. Kim, “Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods,” Adv. Mater. 21(21), 2185–2189 (2009). [CrossRef]
  12. J. Elias, C. Lévy-Clément, M. Bechelany, J. Michler, G. Y. Wang, Z. Wang, and L. Philippe, “Hollow urchin-like ZnO thin films by electrochemical deposition,” Adv. Mater. 22(14), 1607–1612 (2010). [CrossRef] [PubMed]
  13. J. Chen, D. W. Zhao, W. Lei, and X. W. Sun, “Cosensitized solar cells based on a flower-like ZnO nanorod structure,” IEEE J. Sel. Top. Quantum Electron. 16(6), 1607–1610 (2010). [CrossRef]
  14. J. X. Wang, C. M. L. Wu, W. S. Cheung, L. B. Luo, Z. B. He, G. D. Yuan, W. J. Zhang, C. S. Lee, and S. T. Lee, “Synthesis of hierarchical porous ZnO disklike nanostructures for improved photovoltaic properties of dye-sensitized solar cells,” J. Phys. Chem. C 114(31), 13157–13161 (2010). [CrossRef]
  15. Y. Y. Lin, C. W. Chen, T. H. Chu, W. F. Su, C. C. Lin, C. H. Ku, J. J. Wu, and C. H. Chen, “Nanostructured metal oxide/conjugated polymer hybrid solar cells by low temperature solution processes,” J. Mater. Chem. 17(43), 4571–4576 (2007). [CrossRef]
  16. Y. H. Ko, J. W. Leem, and J. S. Yu, “Controllable synthesis of periodic flower-like ZnO nanostructures on Si subwavelength grating structures,” Nanotechnology 22(20), 205604 (2011). [CrossRef] [PubMed]
  17. Y. H. Ko and J. S. Yu, “Design of hemi-urchin shaped ZnO nanostructures for broadband and wide-angle antireflection coatings,” Opt. Express 19(1), 297–305 (2011). [CrossRef] [PubMed]
  18. B. V. Andersson, D. M. Huang, A. J. Moulé, and O. Inganäs, “An optical spacer is no panacea for light collection in organic solar cells,” Appl. Phys. Lett. 94(4), 043302 (2009). [CrossRef]
  19. W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102(10), 103105 (2007). [CrossRef]
  20. R. Dewan, M. Marinkovic, R. Noriega, S. Phadke, A. Salleo, and D. Knipp, “Light trapping in thin-film silicon solar cells with submicron surface texture,” Opt. Express 17(25), 23058–23065 (2009). [CrossRef] [PubMed]
  21. T. Minemoto, C. Okamoto, S. Omae, M. Murozono, H. Takakura, and Y. Hamakawa, “Fabrication of spherical silicon solar cells with semi-light-concentration system,” Jpn. J. Appl. Phys. 44(7A), 4820–4824 (2005). [CrossRef]
  22. S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010). [CrossRef] [PubMed]
  23. M. F. Cansizoglu, R. Engelken, H. W. Seo, and T. Karabacak, “High optical absorption of indium sulfide nanorod arrays formed by glancing angle deposition,” ACS Nano 4(2), 733–740 (2010). [CrossRef] [PubMed]
  24. Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. S. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10(10), 3823–3827 (2010). [CrossRef] [PubMed]
  25. Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010). [CrossRef] [PubMed]
  26. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010). [CrossRef] [PubMed]
  27. J. Y. Wang, F. J. Tsai, J. J. Huang, C. Y. Chen, N. Li, Y. W. Kiang, and C. C. Yang, “Enhancing InGaN-based solar cell efficiency through localized surface plasmon interaction by embedding Ag nanoparticles in the absorbing layer,” Opt. Express 18(3), 2682–2694 (2010). [CrossRef] [PubMed]
  28. S. Pillai and M. A. Green, “Plasmonics for photovoltaic applications,” Sol. Energy Mater. Sol. Cells 94(9), 1481–1486 (2010). [CrossRef]
  29. J. Y. Lee and P. Peumans, “The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer,” Opt. Express 18(10), 10078–10087 (2010). [CrossRef] [PubMed]
  30. Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008). [CrossRef] [PubMed]
  31. Y. C. Chao, C. Y. Chen, C. A. Lin, Y. A. Dai, and J. H. He, “Antireflection effect of ZnO nanorod arrays,” J. Mater. Chem. 20(37), 8134–8138 (2010). [CrossRef]
  32. J. Y. Chen and K. W. Sun, “Growth of vertically aligned ZnO nanorod arrays as antireflection layer on silicon solar cells,” Sol. Energy Mater. Sol. Cells 94(5), 930–934 (2010). [CrossRef]
  33. Z. Jehl, J. Rousset, F. Donsanti, G. Renou, N. Naghavi, and D. Lincot, “Electrodeposition of ZnO nanorod arrays on ZnO substrate with tunable orientation and optical properties,” Nanotechnology 21(39), 395603 (2010). [CrossRef] [PubMed]
  34. R. Tena-Zaera, J. Elias, and C. Lévy-Clément, “ZnO nanowire arrays: optical scattering and sensitization to solar light,” Appl. Phys. Lett. 93(23), 233119 (2008). [CrossRef]
  35. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966). [CrossRef]
  36. S. M. Yang, S. G. Jang, D. G. Choi, S. R. Kim, and H. K. Yu, “Nanomachining by colloidal lithography,” Small 2(4), 458–475 (2006). [CrossRef] [PubMed]
  37. J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited