OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 27 — Dec. 19, 2011
  • pp: 26065–26078

Fourier domain interpretation of real and pseudo-moiré phenomena

Krzysztof Patorski, Krzysztof Pokorski, and Maciej Trusiak  »View Author Affiliations


Optics Express, Vol. 19, Issue 27, pp. 26065-26078 (2011)
http://dx.doi.org/10.1364/OE.19.026065


View Full Text Article

Enhanced HTML    Acrobat PDF (14823 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Unified interpretation for the real and pseudo moiré phenomena using the concept of biased and unbiased frequency pairs in the Fourier spectrum is given. Intensity modulations are responsible for pseudo moiré appearance in the image plane rather than average intensity variations dominating real moiré. Detection of pseudo moiré necessitates resolving superimposed structures in the image plane. In the case of the product type superimposition generating both real and pseudo moiré, our interpretation utilizes the Fourier domain information only. The moiré pattern characteristics such as an effective carrier, modulation and bias intensity distributions can be readily predicted. We corroborate them using two-dimensional continuous wavelet transform and fast adaptive bidimensional empirical mode decomposition methods as complementary image processing tools.

© 2011 OSA

OCIS Codes
(100.2650) Image processing : Fringe analysis
(120.4120) Instrumentation, measurement, and metrology : Moire' techniques

ToC Category:
Image Processing

History
Original Manuscript: September 30, 2011
Revised Manuscript: October 19, 2011
Manuscript Accepted: October 23, 2011
Published: December 7, 2011

Citation
Krzysztof Patorski, Krzysztof Pokorski, and Maciej Trusiak, "Fourier domain interpretation of real and pseudo-moiré phenomena," Opt. Express 19, 26065-26078 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-27-26065


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Kobayashi, Handbook on Experimental Mechanics, 2nd ed., (SEM, Bethel, 1993).
  2. K. Patorski, Handbook of the Moiré Fringe Technique (Elsevier, Amsterdam, 1993).
  3. O. Bryngdahl, “Characteristics of superposed patterns in optics,” J. Opt. Soc. Am.66(2), 87–94 (1976). [CrossRef]
  4. I. Amidror and R. D. Hersch, “The role of Fourier theory and of modulation in the prediction of visible moiré effects,” J. Mod. Opt.56(9), 1103–1118 (2009). [CrossRef]
  5. I. Amidror, The Theory of the Moiré Phenomenon (Springer-Verlag, London, 2009).
  6. O. Bryngdahl, “Moiré: Formation and interpretation,” J. Opt. Soc. Am.64(10), 1287–1294 (1974). [CrossRef]
  7. O. Bryngdahl, “Moiré and higher grating harmonics,” J. Opt. Soc. Am.65(6), 685–694 (1975). [CrossRef]
  8. K. Patorski, S. Yokozeki, and T. Suzuki, “„Moiré profile prediction by using Fourier series formalism,” Jpn. J. Appl. Phys.15(3), 443–456 (1976). [CrossRef]
  9. R. Eschbach, “Generation of moiré by nonlinear transfer characteristics,” J. Opt. Soc. Am. A5(11), 1828–1835 (1988). [CrossRef]
  10. Z. Wang and H. Ma, “Advanced continuous wavelet transform algorithm for digital interferogram analysis and processing,” Opt. Eng.45(4), 045601 (2006). [CrossRef]
  11. M. A. Gdeisat, D. R. Burton, and M. J. Lalor, “Spatial carrier fringe pattern demodulation by use of a two-dimensional continuous wavelet transform,” Appl. Opt.45(34), 8722–8732 (2006). [CrossRef] [PubMed]
  12. K. Pokorski and K. Patorski, “Visualization of additive-type moiré and time-average fringe patterns using the continuous wavelet transform,” Appl. Opt.49(19), 3640–3651 (2010). [CrossRef] [PubMed]
  13. K. Patorski and K. Pokorski, “Examination of singular scalar light fields using wavelet processing of fork fringes,” Appl. Opt.50(5), 773–781 (2011). [CrossRef] [PubMed]
  14. M. B. Bernini, A. Federico, and G. H. Kaufmann, “Noise reduction in digital speckle pattern interferometry using bidimensional empirical mode decomposition,” Appl. Opt.47(14), 2592–2598 (2008). [CrossRef] [PubMed]
  15. M. B. Bernini, A. Federico, and G. H. Kaufmann, “Normalization of fringe patterns using the bidimensional empirical mode decomposition and the Hilbert transform,” Appl. Opt.48(36), 6862–6869 (2009). [CrossRef] [PubMed]
  16. M. B. Bernini, A. Federico, and G. H. Kaufmann, “Phase measurement in temporal speckle pattern interferometry signals presenting low-modulated regions by means of the bidimensional empirical mode decomposition,” Appl. Opt.50(5), 641–647 (2011). [CrossRef] [PubMed]
  17. M. Wielgus and K. Patorski, “Evaluation of amplitude encoded fringe patterns using the bidimensional empirical mode decomposition and the 2D Hilbert transform generalizations,” Appl. Opt.50(28), 5513–5523 (2011). [CrossRef] [PubMed]
  18. S. M. A. Bhuiyan, R. R. Adhami, and J. F. Khan, “A novel approach of fast and adaptive bidimensional empirical mode decomposition,” IEEE Int. Conf. on Acoustics, Speech and Signal Processing, 1313–1316 (2008).
  19. S. M. A. Bhuiyan, R. R. Adhami, and J. F. Khan, “Fast and adaptive bidimensional empirical mode decomposition using order-statistics filter based envelope estimation,” EURASIP J. Adv. Signal Process.ID728356, 1–18 (2008). [CrossRef]
  20. N. E. Huang, Z. Sheng, S. R. Long, M. C. Wu, W. H. Shih, Q. Zeng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis,” Proc. R. Soc. Lond. A454(1971), 903–995 (1998). [CrossRef]
  21. S. Damerval, S. Meignen, and V. Perrier, “A fast algorithm for bidimensional EMD,” IEEE Signal Process. Lett.12(10), 701–704 (2005). [CrossRef]
  22. D. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull algorithm for convex hulls,” ACM Trans. Math. Softw.22(4), 469–483 (1996). [CrossRef]
  23. J. C. Nunes, Y. Bouaoune, E. Delechelle, O. Niang, and Ph. Bunel, “Image analysis by bidimensional empirical mode decomposition,” Image Vis. Comput.21(12), 1019–1026 (2003). [CrossRef]
  24. X. Guanlei, W. Xiatong, and X. Xiaogang, “Improved bi-dimensional EMD and Hilbert spectrum for the analysis of textures,” Pattern Recognit.42(5), 718–734 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited