OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 27 — Dec. 19, 2011
  • pp: 26106–26116

Birefringent porous silicon membranes for optical sensing

Jesús Álvarez, Paolo Bettotti, Isaac Suárez, Neeraj Kumar, Daniel Hill, Vladimir Chirvony, Lorenzo Pavesi, and Juan Martínez-Pastor  »View Author Affiliations

Optics Express, Vol. 19, Issue 27, pp. 26106-26116 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1675 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work anisotropic porous silicon is investigated as a material for optical sensing. Birefringence and sensitivity of the anisotropic porous silicon membranes are thoroughly studied in the framework of Bruggeman model which is extended to incorporate the influence of environment effects, such as silicon oxidation. The membranes were also characterized optically demonstrating sensitivity as high as 1245 nm/RIU at 1500 nm. This experimental value only agrees with the theory when it takes into consideration the effect of silicon oxidation. Furthermore we demonstrate that oxidized porous silicon membranes have optical parameters with long term stability. Finally, we developed a new model to determine the contribution of the main depolarization sources to the overall depolarization process, and how it influences the measured spectra and the resolution of birefringence measurements.

© 2011 OSA

OCIS Codes
(260.1440) Physical optics : Birefringence
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(290.5855) Scattering : Scattering, polarization

ToC Category:

Original Manuscript: July 11, 2011
Revised Manuscript: October 7, 2011
Manuscript Accepted: October 31, 2011
Published: December 7, 2011

Jesús Álvarez, Paolo Bettotti, Isaac Suárez, Neeraj Kumar, Daniel Hill, Vladimir Chirvony, Lorenzo Pavesi, and Juan Martínez-Pastor, "Birefringent porous silicon membranes for optical sensing," Opt. Express 19, 26106-26116 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Jane, R. Dronov, A. Hodges, and N. H. Voelcker, “Porous silicon biosensors on the advance,” Trends Biotechnol. 27(4), 230–239 (2009). [CrossRef] [PubMed]
  2. X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007). [CrossRef] [PubMed]
  3. S. Patskovsky, M. Meunier, P. N. Prasad, and A. V. Kabashin, “Self-noise-filtering phase-sensitive surface plasmon resonance biosensing,” Opt. Express 18(14), 14353–14358 (2010). [CrossRef] [PubMed]
  4. F. Prieto, L. Lechuga, A. Calle, A. Llobera, and C. Dominguez, “Optimized silicon antiresonant reflecting optical waveguides for sensing applications,” J. Lightwave Technol. 19(1), 75–83 (2001). [CrossRef]
  5. X. Wei and S. M. Weiss, “Guided mode biosensor based on grating coupled porous silicon waveguide,” Opt. Express 19(12), 11330–11339 (2011). [CrossRef] [PubMed]
  6. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007). [CrossRef] [PubMed]
  7. T. Claes, J. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-Free Biosensing With a Slot-Waveguide-Based Ring Resonator in Silicon on Insulator,” IEEE Photon. J. 1(3), 197–204 (2009). [CrossRef]
  8. N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express 15(6), 3169–3176 (2007). [CrossRef] [PubMed]
  9. T. Xu, N. Zhu, M. Y. Xu, L. Wosinski, J. S. Aitchison, and H. E. Ruda, “Pillar-array based optical sensor,” Opt. Express 18(6), 5420–5425 (2010). [CrossRef] [PubMed]
  10. C. Kang, C. T. Phare, Y. A. Vlasov, S. Assefa, and S. M. Weiss, “Photonic crystal slab sensor with enhanced surface area,” Opt. Express 18(26), 27930–27937 (2010). [CrossRef] [PubMed]
  11. O. Bisi, S. Ossicini, and L. Pavesi, “Porous silicon: a quantum sponge structure for silicon based optoelectronics,” Surf. Sci. Rep. 38(1–3), 1–126 (2000). [CrossRef]
  12. V. S. Lin, K. Motesharei, K. P. Dancil, M. J. Sailor, and M. R. A. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997). [CrossRef] [PubMed]
  13. V. Mulloni and L. Pavesi, “Porous silicon microcavities as optical chemical sensors,” Appl. Phys. Lett. 76(18), 2523–2525 (2000). [CrossRef]
  14. M. S. Salem, M. J. Sailor, K. Fukami, T. Sakka, and Y. H. Ogata, “Sensitivity of porous silicon rugate filters for chemical vapor detection,” J. Appl. Phys. 103(8), 083516 (2008). [CrossRef]
  15. T. Jalkanen, V. Torres-Costa, J. Salonen, M. Björkqvist, E. Mäkilä, J. M. Martínez-Duart, and V. P. Lehto, “Optical gas sensing properties of thermally hydrocarbonized porous silicon Bragg reflectors,” Opt. Express 17(7), 5446–5456 (2009). [CrossRef] [PubMed]
  16. E. Gross, D. Kovalev, N. Künzner, V. Y. Timoshenko, J. Diener, and F. Koch, “Highly sensitive recognition element based on birefringent porous silicon layers,” J. Appl. Phys. 90(7), 3529–3532 (2001). [CrossRef]
  17. M. Kompan, J. Salonen, and I. Shabanov, “Anomalous birefringence of light in free-standing samples of porous silicon,” J. Exp. Theor. Phys. 90(2), 324–329 (2000). [CrossRef]
  18. B-H. O, R. Liu, Y. Y. Li, M. Sailor, and Y. Fainman, “Vapor sensor realized in an ultracompact polarization interferometer built of a freestanding porous-silicon form birefringent film,” IEEE Photo. Technol. Lett. 15(6), 834–836 (2003). [CrossRef]
  19. R. L. Smith and S. D. Collins, “Porous silicon formation mechanisms,” J. Appl. Phys. 71(8), R1– R22 (1992). [CrossRef]
  20. N. Künzner, D. Kovalev, J. Diener, E. Gross, V. Y. Timoshenko, G. Polisski, F. Koch, and M. Fujii, “Giant birefringence in anisotropically nanostructured silicon,” Opt. Lett. 26(16), 1265–1267 (2001). [CrossRef] [PubMed]
  21. N. Künzner, J. Diener, E. Gross, D. Kovalev, V. Y. Timoshenko, and M. Fujii, “Form birefringence of anisotropically nanostructured silicon,” Phys. Rev. B 71(19), 195304 (2005). [CrossRef]
  22. V. Y. Timoshenko, L. A. Osminkina, A. I. Efimova, L. A. Golovan, P. K. Kashkarov, D. Kovalev, N. Künzner, E. Gross, J. Diener, and F. Koch, “Anisotropy of optical absorption in birefringent porous silicon,” Phys. Rev. B 67(11), 113405 (2003). [CrossRef]
  23. J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A 46(3), 1614–1629 (1992). [CrossRef] [PubMed]
  24. H. Looyenga, “Dielectric constants of heterogeneous mixtures,” Physica 31(3), 401–406 (1965). [CrossRef]
  25. T. C. Choy, “Effective Medium Theory, Principles and Applications,” Oxford University Press, (1999).
  26. K. Nishida, M. Fujii, S. Hayashi, and J. Diener, “Temperature dependence of optical anisotropy of birefringent porous silicon,” Appl. Phys. Lett. 96(24), 243102 (2010). [CrossRef]
  27. V. Kochergin, M. Christophersen, and H. Föll, “Effective medium approach for calculations of optical anisotropy in porous materials,” Appl. Phys. B 79, 731–739 (2004). [CrossRef]
  28. K. A. Kilian, T. Böcking, and J. J. Gooding, “The importance of surface chemistry in mesoporous materials: lessons from porous silicon biosensors,” Chem. Commun. (Camb.) (6): 630–640 (2009). [CrossRef] [PubMed]
  29. I. Suárez, V. Chirvony, D. Hill, and J. Martínez-Pastor, “Simulation of surface-modified porous silicon photonic crystals for biosensing applications,” Phot. Nano. Fund. Appl., doi:10.1016, (2011)
  30. M. Ghulinyan, C. J. Oton, G. Bonetti, Z. Gaburro, and L. Pavesi, “Free-standing porous silicon single and multiple optical cavities,” J. Appl. Phys. 93(12), 9724–9729 (2003). [CrossRef]
  31. A. E. Pap, K. Kordás, T. F. George, and S. Leppävuori, “Thermal Oxidation of Porous Silicon: Study on Reaction Kinetics,” J. Phys. Chem. B 108(34), 12744–12747 (2004). [CrossRef]
  32. S. M. Nee, “Depolarization and retardation of a birefringent slab,” J. Opt. Soc. Am. A 17(11), 2067–2073 (2000). [CrossRef] [PubMed]
  33. K. H. Jun and K. S. Lim, “Simulation of the depolarization effect in porous silicon,” Appl. Opt. 42(7), 1211–1215 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited