OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 27 — Dec. 19, 2011
  • pp: 26132–26149

Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems

Konstantin Y. Bliokh, Elena A. Ostrovskaya, Miguel A. Alonso, Oscar G. Rodríguez-Herrera, David Lara, and Chris Dainty  »View Author Affiliations


Optics Express, Vol. 19, Issue 27, pp. 26132-26149 (2011)
http://dx.doi.org/10.1364/OE.19.026132


View Full Text Article

Enhanced HTML    Acrobat PDF (1891 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a general theory of spin-to-orbital angular momentum (AM) conversion of light in focusing, scattering, and imaging optical systems. Our theory employs universal geometric transformations of non-paraxial optical fields in such systems and allows for direct calculation and comparison of the AM conversion efficiency in different physical settings. Observations of the AM conversions using local intensity distributions and far-field polarimetric measurements are discussed.

© 2011 OSA

OCIS Codes
(260.5430) Physical optics : Polarization
(350.1370) Other areas of optics : Berry's phase
(260.6042) Physical optics : Singular optics

ToC Category:
Physical Optics

History
Original Manuscript: August 23, 2011
Manuscript Accepted: October 6, 2011
Published: December 7, 2011

Citation
Konstantin Y. Bliokh, Elena A. Ostrovskaya, Miguel A. Alonso, Oscar G. Rodríguez-Herrera, David Lara, and Chris Dainty, "Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems," Opt. Express 19, 26132-26149 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-27-26132


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Allen, S. M. Barnett, and M. J. Padgett, eds., Optical angular momentum (Taylor and Francis, 2003).
  2. S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser & Photon. Rev.2(4), 299–313 (2008). [CrossRef]
  3. G. Biener, A. Niv, V. Kleiner, and E. Hasman, “Formation of helical beams by use of Pancharatnam-Berry phase optical elements,” Opt. Lett.27(21), 1875–1877 (2002). [CrossRef] [PubMed]
  4. A. Ciattoni, G. Cincotti, and C. Palma, “Angular momentum dynamics of a paraxial beam in a uniaxial crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.67(3 Pt 2), 036618 (2003). [CrossRef] [PubMed]
  5. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett.96(16), 163905 (2006). [CrossRef] [PubMed]
  6. G. F. Calvo and A. Picón, “Spin-induced angular momentum switching,” Opt. Lett.32(7), 838–840 (2007). [CrossRef] [PubMed]
  7. E. Brasselet, Y. Izdebskaya, V. Shvedov, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Dynamics of optical spin-orbit coupling in uniaxial crystals,” Opt. Lett.34(7), 1021–1023 (2009). [CrossRef] [PubMed]
  8. M. Y. Darsht, B. Y. Zel’dovich, I. V. Kataevskaya, and N. D. Kundikova, “Formation of an isolated wavefront dislocation,” Zh. Eksp. Theor. Fiz.107, 1464[JETP 80, 817 (1995)].
  9. Z. Bomzon, M. Gu, and J. Shamir, “Angular momentum and geometric phases in tightly-focused circularly polarized plane waves,” Appl. Phys. Lett.89(24), 241104 (2006). [CrossRef]
  10. Z. Bomzon and M. Gu, “Space-variant geometrical phases in focused cylindrical light beams,” Opt. Lett.32(20), 3017–3019 (2007). [CrossRef] [PubMed]
  11. Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett.99(7), 073901 (2007). [CrossRef] [PubMed]
  12. Y. Zhao, D. Shapiro, D. McGloin, D. T. Chiu, and S. Marchesini, “Direct observation of the transfer of orbital angular momentum to metal particles from a focused circularly polarized Gaussian beam,” Opt. Express17(25), 23316–23322 (2009). [CrossRef] [PubMed]
  13. T. A. Nieminen, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Angular momentum of a strongly focused Gaussian beam,” J. Opt. A, Pure Appl. Opt.10(11), 115005 (2008). [CrossRef]
  14. Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett.101(4), 043903 (2008). [CrossRef] [PubMed]
  15. P. B. Monteiro, P. A. M. Neto, and H. M. Nussenzveig, “Angular momentum of focused beams: Beyond the paraxial approximation,” Phys. Rev. A79(3), 033830 (2009). [CrossRef]
  16. O. G. Rodríguez-Herrera, D. Lara, K. Y. Bliokh, E. A. Ostrovskaya, and C. Dainty, “Optical nanoprobing via spin-orbit interaction of light,” Phys. Rev. Lett.104(25), 253601 (2010). [CrossRef] [PubMed]
  17. M. R. Foreman and P. Török, “Spin-orbit coupling and conservation of angular momentum flux in non-paraxial imaging of forbidden radiation,” New J. Phys.13(6), 063041 (2011). [CrossRef]
  18. A. Dogariu and C. Schwartz, “Conservation of angular momentum of light in single scattering,” Opt. Express14(18), 8425–8433 (2006). [CrossRef] [PubMed]
  19. C. Schwartz and A. Dogariu, “Backscattered polarization patterns, optical vortices, and the angular momentum of light,” Opt. Lett.31(8), 1121–1123 (2006). [CrossRef] [PubMed]
  20. C. Schwartz and A. Dogariu, “Backscattered polarization patterns determined by conservation of angular momentum,” J. Opt. Soc. Am. A25(2), 431–436 (2008). [CrossRef] [PubMed]
  21. D. Haefner, S. Sukhov, and A. Dogariu, “Spin hall effect of light in spherical geometry,” Phys. Rev. Lett.102(12), 123903 (2009). [CrossRef] [PubMed]
  22. Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett.9(8), 3016–3019 (2009). [CrossRef] [PubMed]
  23. L. T. Vuong, A. J. L. Adam, J. M. Brok, P. C. M. Planken, and H. P. Urbach, “Electromagnetic spin-orbit interactions via scattering of subwavelength apertures,” Phys. Rev. Lett.104(8), 083903 (2010). [CrossRef] [PubMed]
  24. Y. Gorodetski, S. Nechayev, V. Kleiner, and E. Hasman, “Plasmonic Aharonov-Bohm effect: Optical spin as the magnetic flux parameter,” Phys. Rev. B82(12), 125433 (2010). [CrossRef]
  25. E. Hasman, G. Biener, A. Niv, and V. Kleiner, “Space-variant polarization manipulation,” Prog. Opt.47, 215–289 (2005). [CrossRef]
  26. L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt.13(6), 064001 (2011). [CrossRef]
  27. S. M. Barnett and L. Allen, “Orbital angular-momentum and nonparaxial light-beams,” Opt. Commun.110(5-6), 670–678 (1994). [CrossRef]
  28. C.-F. Li, “Spin and orbital angular momentum of a class of nonparaxial light beams having a globally defined polarization,” Phys. Rev. A80(6), 063814 (2009). [CrossRef]
  29. K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, “Angular momenta and spin-orbit interaction of nonparaxial light in free space,” Phys. Rev. A82(6), 063825 (2010). [CrossRef]
  30. N. B. Baranova, A. Y. Savchenko, and B. Y. Zel'dovich, “Transverse shift of a focal spot due to switching of the sign of circular-polarization,” JETP Lett.59, 232–234 (1994).
  31. B. Y. Zel’dovich, N. D. Kundikova, and L. F. Rogacheva, “Observed transverse shift of a focal spot upon a change in the sign of circular polarization,” JETP Lett.59, 766–769 (1994).
  32. V. Garbin, G. Volpe, E. Ferrari, M. Versluis, D. Cojoc, and D. Petrov, “Mie scattering distinguishes the topological charge of an optical vortex: a homage to Gustav Mie,” New J. Phys.11(1), 013046 (2009). [CrossRef]
  33. E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett.103(10), 103903 (2009). [CrossRef] [PubMed]
  34. F. Manni, K. Lagoudakis, T. Paraïso, R. Cerna, Y. Léger, T. Liew, I. Shelykh, A. Kavokin, F. Morier-Genoud, and B. Deveaud-Plédran, “Spin-to-orbital angular momentum conversion in semiconductor microcavities,” Phys. Rev. B83(24), 241307 (2011). [CrossRef]
  35. S. J. van Enk and G. Nienhuis, “Spin and orbital angular momentum of photons,” Europhys. Lett.25(7), 497–501 (1994). [CrossRef]
  36. S. J. van Enk and G. Nienhuis, “Commutation rules and eigenvalues of spin and orbital angular momentum of radiation fields,” J. Mod. Opt.41(5), 963–977 (1994). [CrossRef]
  37. E. Wolf, ““Electromagnetic diffraction in optical systems. I. An integral representation of the image field,” Proc. Roy. Soc. London,” Ser. A253, 349–357 (1959).
  38. B. Richards and E. Wolf, ““Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci.253(1274), 358–379 (1959). [CrossRef]
  39. M. V. Berry, “Interpreting the anholonomy of coiled light,” Nature326(6110), 277–278 (1987). [CrossRef]
  40. P. Török, P. D. Higdon, and T. Wilson, “On the general properties of polarized light conventional and confocal microscopes,” Opt. Commun.148(4-6), 300–315 (1998). [CrossRef]
  41. A. Bekshaev, K. Y. Bliokh, and M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt.13(5), 053001 (2011). [CrossRef]
  42. R. Bhandari, “Polarization of light and topological phases,” Phys. Rep.281(1), 2–64 (1997). [CrossRef]
  43. M. A. Alonso and G. W. Forbes, “Uncertainty products for nonparaxial wave fields,” J. Opt. Soc. Am. A17(12), 2391–2402 (2000). [CrossRef] [PubMed]
  44. M. A. Alonso, “The effect of orbital angular momentum and helicity in the uncertainty-type relations between focal spot size and angular spread,” J. Opt.13(6), 064016 (2011). [CrossRef]
  45. N. Bokor, Y. Iketaki, T. Watanabe, and M. Fujii, “Investigation of polarization effects for high-numerical-aperture first-order Laguerre-Gaussian beams by 2D scanning with a single fluorescent microbead,” Opt. Express13(26), 10440–10447 (2005). [CrossRef] [PubMed]
  46. Y. Iketaki, T. Watanabe, N. Bokor, and M. Fujii, “Investigation of the center intensity of first- and second-order Laguerre-Gaussian beams with linear and circular polarization,” Opt. Lett.32(16), 2357–2359 (2007). [CrossRef] [PubMed]
  47. K. Y. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman, “Coriolis effect in optics: unified geometric phase and spin-Hall effect,” Phys. Rev. Lett.101(3), 030404 (2008). [CrossRef] [PubMed]
  48. M. Born and E. Wolf, Principles of Optics, 7th edn. (Pergamon, 2005).
  49. G. Moe and W. Happer, “Conservation of angular momentum for light propagating in a transparent anisotropic medium,” J. Phys. B10(7), 1191–1208 (1977). [CrossRef]
  50. V. Rossetto and A. C. Maggs, “Writhing geometry of stiff polymers and scattered light,” Eur. Phys. J. B29(2), 323–326 (2002). [CrossRef]
  51. D. Lacoste, V. Rossetto, F. Jaillon, and H. Saint-Jalmes, “Geometric depolarization in patterns formed by backscattered light,” Opt. Lett.29(17), 2040–2042 (2004). [CrossRef] [PubMed]
  52. M. V. Berry, “Optical currents,” J. Opt. A, Pure Appl. Opt.11(9), 094001 (2009). [CrossRef]
  53. A. Bekshaev and S. Sviridova, “Mechanical action of inhomogeneously polarized optical fields and detection of the internal energy flows,” arXiv:1102.3514.
  54. O. G. Rodríguez-Herrera, D. Lara, and C. Dainty, “Far-field polarization-based sensitivity to sub-resolution displacements of a sub-resolution scatterer in tightly focused fields,” Opt. Express18(6), 5609–5628 (2010). [CrossRef] [PubMed]
  55. Y. A. Kravtsov, B. Bieg, and K. Y. Bliokh, “Stokes-vector evolution in a weakly anisotropic inhomogeneous medium,” J. Opt. Soc. Am. A24(10), 3388–3396 (2007). [CrossRef] [PubMed]
  56. M. V. Berry, “Paraxial beams of spinning light,” Proc. SPIE3487, 6–11 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited