OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 27 — Dec. 19, 2011
  • pp: 26150–26160

Using adaptive four-band OFDM modulation with 40 Gb/s downstream and 10 Gb/s upstream signals for next generation long-reach PON

C. H. Yeh, C. W. Chow, H. Y. Chen, and B. W. Chen  »View Author Affiliations


Optics Express, Vol. 19, Issue 27, pp. 26150-26160 (2011)
http://dx.doi.org/10.1364/OE.19.026150


View Full Text Article

Enhanced HTML    Acrobat PDF (1095 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this demonstration, we propose and demonstrate an adaptive long-reach passive optical network (LR-PON) using four-band orthogonal frequency division multiplexed (OFDM) channels. The downstream traffic rates from 6.25 to 40 Gb/s (using fixed quadrature amplitude modulation (QAM) level in the four OFDM bands) and from 9.37 to 40.3 Gb/s (using variable QAM levels in the four OFDM bands) can be achieved adaptively in the optical network units (ONUs) depending on different fiber transmission lengths from 0 to 100 km. For the upstream transmission, a 10 Gb/s 16-QAM OFDM signal with pre-emphasis is experimentally performed by using a 2.5 GHz directly modulated laser (DML). Based on the simulation and experimental results, the proposed adaptive four-band OFDM system could be a promising candidate for the future LR-PON.

© 2011 OSA

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(060.4510) Fiber optics and optical communications : Optical communications

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: October 27, 2011
Revised Manuscript: November 14, 2011
Manuscript Accepted: November 19, 2011
Published: December 7, 2011

Citation
C. H. Yeh, C. W. Chow, H. Y. Chen, and B. W. Chen, "Using adaptive four-band OFDM modulation with 40 Gb/s downstream and 10 Gb/s upstream signals for next generation long-reach PON," Opt. Express 19, 26150-26160 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-27-26150


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. H. Yeh, C. W. Chow, and Y. L. Liu, “Self-protected ring-star-architecture TDM passive optical network with triple-play management,” Opt. Commun.284(13), 3248–3250 (2011). [CrossRef]
  2. P. P. Iannone and K. C. Reichmann, “Optical access beyond 10 Gb/s PON,” Proc. of ECOC, 2010, Invited Paper, Paper Tu.3.B.1.
  3. C. H. Yeh, C. W. Chow, Y. F. Wu, F. Y. Shih, and S. Chi, “Using Fabry-Perot laser diode and reflective semiconductor optical amplifier for long reach WDM-PON system,” Opt. Commun.284(21), 5148–5152 (2011). [CrossRef]
  4. C. H. Yeh, C. W. Chow, and C. H. Hsu, “40 Gb/s time division multiplexed passive optical networks using downstream OOK and upstream OFDM modulations,” IEEE Photon. Technol. Lett.22(2), 118–120 (2010). [CrossRef]
  5. C. W. Chow and C. H. Yeh, “40-Gb/s downstream DPSK and 40-Gb/s upstream OOK signal remodulation PON using reduced modulation index,” Opt. Express18(25), 26046–26051 (2010). [CrossRef] [PubMed]
  6. C. W. Chow, L. Xu, C. H. Yeh, H. K. Tsang, W. Hofmann, and M. C. Amann, “40 Gb/s upstream transmitters using directly-modulated 1.55 μm VCSEL array for high-split-ratio PONs,” IEEE Photon. Technol. Lett.22(5), 347–349 (2010). [CrossRef]
  7. H. H. Lee, P. P. Iannone, K. C. Richmann, and B. W. Kim, “A bidirectional SOA-Raman hybrid amplifier shared by 2.5 Gb/s, 60 km long-reach WDM-TDM PON,” Proc. of ECOC, 2008, Paper P.6.05.
  8. C. W. Chow and C. H. Yeh, “Mitigation of Rayleigh backscattering in 10-Gb/s downstream and 2.5-Gb/s upstream DWDM 100-km long-reach PONs,” Opt. Express19(6), 4970–4976 (2011). [CrossRef] [PubMed]
  9. I. T. Monroy, F. Ohman, K. Yvind, R. Kjaer, C. Peucheret, A. M. J. Koonen, and P. Jeppesen, “85 km long reach PON system using a reflective SOA-EA modulator and distributed Raman fiber amplification,” IEEE LEOS Annual Meeting, 2006, Paper WEE4.
  10. C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation of OFDM-QAM for long reach carrier distributed passive optical networks,” IEEE Photon. Technol. Lett.21(11), 715–717 (2009). [CrossRef]
  11. N. Cvijetic, D. Qian, and J. Yu, “100 Gb/s optical access based on optical orthogonal frequency-division-multiplexing,” IEEE Commun. Mag.48(7), 70–77 (2010). [CrossRef]
  12. T. Duong, N. Genay, P. Chanclou, B. Charbonnier, A. Pizzinat, and R. Brenot, “Experiential demonstration of 10 Gb/s upstream transmission by remote modulation of 1 GHz RSOA using adaptively modulated optical OFDM for WDM-PON single fiber architecture,” Proc. of ECOC, 2008, Paper Th.3.F.1.
  13. L. Cheng, H. Wen, X. Zheng, H. Zhang, and B. Zhou, “Channel characteristic division OFDM-PON for next generation optical access,” Opt. Express19(20), 19129–19134 (2011). [CrossRef] [PubMed]
  14. D.-Z. Hsu, C.-C. Wei, H.-Y. Chen, W.-Y. Li, and J. Chen, “Cost-effective 33-Gbps intensity modulation direct detection multi-band OFDM LR-PON system employing a 10-GHz-based transceiver,” Opt. Express19(18), 17546–17556 (2011). [CrossRef] [PubMed]
  15. W. Liu, Y. Chang, S.-K. Hsien, B.-W. Chen, Y.-P. Lee, W.-T. Chen, T.-Y. Yang, G.-K. Ma, and Y. Chiu, “A 600 MS/s 30 mW 0.13 μm CMOS ADC array achieving over 60 dB SFDR with adaptive digital equalization,” Proc. IEEE (ISSCC), 82–83 (2009).
  16. P. L. Tien, Y. M. Lin, and M. C. Yuang, “A novel OFDMA-PON architecture toward seamless broadband and wireless integration,” Proc. of OFC, 2009, Paper MOV2.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited