OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 27 — Dec. 19, 2011
  • pp: 26269–26274

Novel approach towards cross-relaxation energy transfer calculation applied on highly thulium doped tellurite glasses

Masaud Taher, Hrvoje Gebavi, Stefano Taccheo, Daniel Milanese, and Rolindes Balda  »View Author Affiliations

Optics Express, Vol. 19, Issue 27, pp. 26269-26274 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (840 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper we calculated, for the first time to the best of our knowledge, the cross relaxation parameter of Tm3+ ions in tellurite glasses over a wide range of concentrations: from 0.36 mol% up to 10 mol%. A new measurement approach based on emission spectra monitoring is proposed. This method is very simple and allows to measure even very highly doped samples. The obtained values of cross-relaxation parameter show a linear dependence with respect to dopant concentration over the full investigated interval, suggesting a dipole-dipole interaction process. The measured slope is 1.81x10−17 cm3 s−1 mol%−1.

© 2011 OSA

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(160.5690) Materials : Rare-earth-doped materials

ToC Category:

Original Manuscript: October 20, 2011
Revised Manuscript: November 22, 2011
Manuscript Accepted: November 22, 2011
Published: December 8, 2011

Masaud Taher, Hrvoje Gebavi, Stefano Taccheo, Daniel Milanese, and Rolindes Balda, "Novel approach towards cross-relaxation energy transfer calculation applied on highly thulium doped tellurite glasses," Opt. Express 19, 26269-26274 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Continuous-wave oscillation of a monomode thulium-doped fibre laser,” Electron. Lett. 24(19), 1222–1223 (1988). [CrossRef]
  2. S. D. Jackson and A. Lauto, “Diode-pumped fiber lasers: a new clinical tool?” Lasers Surg. Med. 30(3), 184–190 (2002). [CrossRef] [PubMed]
  3. J. Y. Allain, M. Monerie, and H. Poignant, “Tunable CW lasing around 0.82, 1.48, 1.88 and 2.35 µm in thulium-doped fluorozirconate fibre,” Electron. Lett. 25(24), 1660–1662 (1989). [CrossRef]
  4. E. R. M. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-doped tellurite fiber amplifier,” IEEE Photon. Technol. Lett. 16(3), 777–779 (2004). [CrossRef]
  5. M. Yamane and Y. Asahara, Glasses for Photonics (Cambridge University Press, 2004).
  6. A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5- µm emission in Er3+ -doped tellurite glasses,” Phys. Rev. B 62(10), 6215–6227 (2000). [CrossRef]
  7. T. Yamamoto, Y. Miyajima, and T. Komukai, “1.9 μm Tm-doped silica fibre laser pumped at 1.57 μm,” Electron. Lett. 30(3), 220–221 (1994). [CrossRef]
  8. J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2-μm germanate fiber laser,” IEEE Photon. Technol. Lett. 18(2), 334–336 (2006). [CrossRef]
  9. Q. Huang, Q. Wang, J. Chang, X. Zhang, Z. Liu, and G. Yu, “Optical parameters and upconversion fluorescence in Tm3+/Yb3+ co-doped tellurite glass,” Laser Phys. 20(4), 865–870 (2010). [CrossRef]
  10. B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “Efficient 2 μm doped tellurite fiber laser,” Opt. Lett. 33(4), 402–404 (2008). [CrossRef] [PubMed]
  11. P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009). [CrossRef]
  12. A. S. S. de Camargo, S. L. de Oliveira, D. F. de Sousa, L. A. O. Nunes, and D. W. Hewak, “Spectroscopic properties and energy transfer parameters of Tm3+ ions in gallium lanthanum sulfide glass,” J. Phys. Condens. Matter 14(41), 9495–9505 (2002). [CrossRef]
  13. R. R. Petrin, M. G. Jani, R. C. Powell, and M. Kokta, “Spectral dynamics of laser pumped Y3Al5O12: Tm: Ho lasers,” Opt. Mater. 1(2), 111–124 (1992). [CrossRef]
  14. C. A. Evans, Z. Ikonić, B. Richards, P. Harrison, and A. Jha, “Theoretical modeling of a 2 μm Tm3+ doped Tellurite fiber laser: the influence of cross relaxation,” J. Lightwave Technol. 27(18), 4026–4032 (2009). [CrossRef]
  15. D. A. Simpson, G. W. Baxter, S. F. Collins, W. E. K. Gibbs, W. Blanc, B. Dussardier, and G. Monnom, “Energy transfer up-conversion in Tm3+-doped silica fiber,” J. Non-Cryst. Solids 352(2), 136–141 (2006). [CrossRef]
  16. H. Gebavi, D. Milanese, R. Balda, S. Chaussedent, M. Ferrari, J. Fernandez, and M. Ferraris, “Spectroscopy and optical characterization of thulium doped TZN glasses,” J. Appl. Phys. 43, 135104 (2010).
  17. S. D. Jackson and T. A. King, “Theoretical modeling of Tm-doped silica fiber lasers,” J. Lightwave Technol. 17(5), 948–956 (1999). [CrossRef]
  18. H. Gebavi, D. Milanese, G. Liao, Q. Chen, M. Ferraris, M. Ivanda, O. Gamulin, and S. Taccheo, “Spectroscopic investigation and optical characterization of novel highly thulium doped tellurite glasses,” J. Non-Cryst. Solids 355(9), 548–555 (2009). [CrossRef]
  19. J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2 µm germanate fiber laser,” IEEE Photon. Technol. Lett. 18(2), 334–336 (2006). [CrossRef]
  20. J. Wu, Z. Yao, J. Zong, and S. Jiang, “Highly efficient high-power thulium-doped germanate glass fiber laser,” Opt. Lett. 32(6), 638–640 (2007). [CrossRef] [PubMed]
  21. J. Wu, S. Jiang, T. Qiu, M. Morrell, A. Schulzgen, and N. Peyghambarian, “Cross-relaxation energy transfer in Tm3+ doped tellurite glass,” in Optical Components and Materials II (San Jose, CA, USA, 2005) 152–161.
  22. G. X. Chen, Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Mid-infrared emission characteristic and energy transfer of Ho3+-doped tellurite glass sensitized by Tm 3+.,” J. Fluoresc. 17(3), 301–307 (2007). [CrossRef] [PubMed]
  23. C. R. Giles, C. A. Burrus, D. DiGiovanni, N. K. Dutta, and G. Raybon, “Characterization of erbium-doped fibers and application to modeling 980-nm and 1480-nm pumped amplifiers,” IEEE Photon. Technol. Lett. 3(4), 363–365 (1991). [CrossRef]
  24. C. R. Giles and E. Desurvire, “Propagation of signal and noise in concatenated erbium-doped fiber optical amplifiers,” J. Lightwave Technol. 9(2), 147–154 (1991). [CrossRef]
  25. F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldacchini, “The interplay of self-trapping and self-quenching for resonant transitions in solids; role of a cavity,” J. Lumin. 94–95, 293–297 (2001). [CrossRef]
  26. F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3,” Opt. Mater. 24(1-2), 103–109 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited