OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 27 — Dec. 19, 2011
  • pp: 26308–26317

Broadband antireflective germanium surfaces based on subwavelength structures for photovoltaic cell applications

Jung Woo Leem, Young Min Song, and Jae Su Yu  »View Author Affiliations


Optics Express, Vol. 19, Issue 27, pp. 26308-26317 (2011)
http://dx.doi.org/10.1364/OE.19.026308


View Full Text Article

Enhanced HTML    Acrobat PDF (3208 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We fabricated the germanium (Ge) subwavelength structures (SWSs) using gold (Au) metallic nanopatterns dewetted by rapid thermal annealing and inductively coupled plasma etching in SiCl4 plasma for Ge-based photovoltaic cells. Using the optimized Au nanopatterns as an etch mask, the Ge SWSs were formed by varying the etching parameters to achieve the better antireflection properties. The reflectance of Ge SWSs depended strongly on their period, height, and shape which are closely related to the refractive index profile between air and the Ge substrate. The tapered cone Ge SWSs reduced considerably the reflectance compared to the samples with a truncated cone shape as well as the Ge substrate due to the linearly graded refractive index distribution from air to the Ge substrate. The Ge SWS with the tapered cone shape and high height exhibited a dramatic decrease in the reflectance (i.e., <10%) over a wide wavelength region of 350-1800 nm, thus leading to a low solar weighted reflectance of ~3.6%. The reflectance was also lower than ~8.8% at a wavelength of 633 nm in the incident angle range of 15-85°. The measured reflectance data of Ge SWSs showed similar trends to the calculated results in a rigorous coupled wave analysis simulation.

© 2011 OSA

OCIS Codes
(310.1210) Thin films : Antireflection coatings
(220.4241) Optical design and fabrication : Nanostructure fabrication
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Solar Energy

History
Original Manuscript: September 28, 2011
Revised Manuscript: November 13, 2011
Manuscript Accepted: November 23, 2011
Published: December 9, 2011

Citation
Jung Woo Leem, Young Min Song, and Jae Su Yu, "Broadband antireflective germanium surfaces based on subwavelength structures for photovoltaic cell applications," Opt. Express 19, 26308-26317 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-27-26308


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Kaufmann, G. Isella, A. Sanchez-Amores, S. Neukom, A. Neels, L. Neumann, A. Brenzikofer, A. Dommann, C. Urban, and H. von Känel, “Near infrared image sensor with integrated germanium photodiodes,” J. Appl. Phys.110(2), 023107 (2011). [CrossRef]
  2. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics2(4), 226–229 (2008). [CrossRef]
  3. W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009). [CrossRef]
  4. M. Yamaguchi, T. Takamoto, and K. Araki, “Super high-efficiency multi-junction and concentrator solar cells,” Sol. Energy Mater. Sol. Cells90(18-19), 3068–3077 (2006). [CrossRef]
  5. I. Prieto, B. Galiana, P. A. Postigo, C. Algora, L. J. Martínez, and I. Rey-Stolle, “Enhanced quantum efficiency of Ge solar cells by a two-dimensional photonic crystal nanostructured surface,” Appl. Phys. Lett.94(19), 191102 (2009). [CrossRef]
  6. N. E. Posthuma, J. van der Heide, G. Flamand, and J. Poortmans, “Emitter formation and contact realization by diffusion for germanium photovoltaic devices,” IEEE Trans. Electron. Dev.54(5), 1210–1215 (2007). [CrossRef]
  7. N. E. Posthuma, J. van der Heide, G. Flamand, and J. Poortmans, “Development of low cost germanium photovoltaic cells for application in TPV using spin on diffusants,” AIP Conf. Proc.738, 337–344 (2004). [CrossRef]
  8. T. Nagashima, K. Okumura, and M. Yamaguchi, “A germanium back contact type thermophotovoltaic cell,” AIP Conf. Proc.890, 174–181 (2007). [CrossRef]
  9. J. van der Heide, N. E. Posthuma, G. Flamand, W. Geens, and J. Poortmans, “Cost-efficient thermophotovoltaic cells based on germanium substrates,” Sol. Energy Mater. Sol. Cells93(10), 1810–1816 (2009). [CrossRef]
  10. P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009). [CrossRef]
  11. Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett.8(5), 1501–1505 (2008). [CrossRef] [PubMed]
  12. T. Hanrath and B. A. Korgel, “Chemical surface passivation of Ge nanowires,” J. Am. Chem. Soc.126(47), 15466–15472 (2004). [CrossRef] [PubMed]
  13. Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, “Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires,” Nano Lett.11(6), 2527–2532 (2011). [CrossRef] [PubMed]
  14. P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature244(5414), 281–282 (1973). [CrossRef]
  15. Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small6(9), 984–987 (2010). [CrossRef] [PubMed]
  16. M. Y. Chiu, C. H. Chang, M. A. Tsai, F. Y. Chang, and P. Yu, “Improved optical transmission and current matching of a triple-junction solar cell utilizing sub-wavelength structures,” Opt. Express18(S3Suppl 3), A308–A313 (2010). [CrossRef] [PubMed]
  17. E. S. Choi, Y. M. Song, G. C. Park, and Y. T. Lee, “Disordered antireflective subwavelength structures using Ag nanoparticles for GaN-based optical device applications,” J. Nanosci. Nanotechnol.11(2), 1342–1345 (2011). [CrossRef] [PubMed]
  18. K. C. Sahoo, Y. Li, and E. Y. Chang, “Shape effect of silicon nitride subwavelength structure on reflectance for silicon solar cells,” IEEE Trans. Electron. Dev.57(10), 2427–2433 (2010). [CrossRef]
  19. J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Antireflective properties of AZO subwavelength gratings patterned by holographic lithography,” Appl. Phys. B99(4), 695–700 (2010). [CrossRef]
  20. B. J. Kim and J. Kim, “Fabrication of GaAs subwavelength structure (SWS) for solar cell applications,” Opt. Express19(S3Suppl 3), A326–A330 (2011). [CrossRef] [PubMed]
  21. J. W. Leem, D. H. Joo, and J. S. Yu, “Biomimetic parabola-shaped AZO subwavelength grating structures for efficient antireflection of Si-based solar cells,” Sol. Energy Mater. Sol. Cells95(8), 2221–2227 (2011). [CrossRef]
  22. J. M. Lee and B. I. Kim, “Thermal dewetting of Pt thin film: Etch-masks for the fabrication of semiconductor nanostructures,” Mater. Sci. Eng. A449–451, 769–773 (2007). [CrossRef]
  23. S. Wang, X. Z. Yu, and H. T. Fan, “Simple lithographic approach for subwavelength structure antireflection,” Appl. Phys. Lett.91(6), 061105 (2007). [CrossRef]
  24. C. H. Chiu, P. Yu, H. C. Kuo, C. C. Chen, T. C. Lu, S. C. Wang, S. H. Hsu, Y. J. Cheng, and Y. C. Chang, “Broadband and omnidirectional antireflection employing disordered GaN nanopillars,” Opt. Express16(12), 8748–8754 (2008). [CrossRef] [PubMed]
  25. J. W. Leem, J. S. Yu, Y. M. Song, and Y. T. Lee, “Antireflection characteristics of disordered GaAs subwavelength structures by thermally dewetted Au nanoparticles,” Sol. Energy Mater. Sol. Cells95(2), 669–676 (2011). [CrossRef]
  26. Y. Li, J. Zhang, and B. Yang, “Antireflection surfaces based on biomimetic nanopillared arrays,” Nano Today5(2), 117–127 (2010). [CrossRef]
  27. J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10(6), 1979–1984 (2010). [CrossRef] [PubMed]
  28. A. J. Jääskeläinen, K. E. Peiponen, J. Räty, U. Tapper, O. Richard, E. I. Kauppinen, and K. Lumme, “Estimation of the refractive index of plastic pigments by Wiener bounds,” Opt. Eng.39(11), 2959–2963 (2000). [CrossRef]
  29. D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci.273(1587), 661–667 (2006). [CrossRef] [PubMed]
  30. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am.71(7), 811–818 (1981). [CrossRef]
  31. S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett.93(13), 133108 (2008). [CrossRef]
  32. M. L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S. Y. Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization,” Opt. Lett.33(21), 2527–2529 (2008). [CrossRef] [PubMed]
  33. D. J. Economou, “Modeling and simulation of plasma etching reactors for microelectronics,” Thin Solid Films365(2), 348–367 (2000). [CrossRef]
  34. D. Redfield, “Method for evaluation of antireflection coatings,” Solar Cells3(1), 27–33 (1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited