OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 27 — Dec. 19, 2011
  • pp: 26406–26415

Weakly modulated silicon-dioxide-cladding gratings for silicon waveguide Fabry-Pérot cavities

Richard R. Grote, Jeffrey B. Driscoll, Claudiu G. Biris, Nicolae C. Panoiu, and Richard M. Osgood  »View Author Affiliations


Optics Express, Vol. 19, Issue 27, pp. 26406-26415 (2011)
http://dx.doi.org/10.1364/OE.19.026406


View Full Text Article

Acrobat PDF (2852 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show by theory and experiment that silicon-dioxide-cladding gratings for Fabry-Pérot cavities on silicon-on-insulator channel (“wire”) waveguides provide a low-refractive-index perturbation, which is required for several important integrated photonics components. The underlying refractive index perturbation of these gratings is significantly weaker than that of analogous silicon gratings, leading to finer control of the coupling coefficient κ. Our Fabry-Pérot cavities are designed using the transfer-matrix method (TMM) in conjunction with the finite element method (FEM) for calculating the effective index of each waveguide section. Device parameters such as coupling coefficient, κ, Bragg mirror stop band, Bragg mirror reflectivity, and quality factor Q are examined via TMM modeling. Devices are fabricated with representative values of distributed Bragg reflector lengths, cavity lengths, and propagation losses. The measured transmission spectra show excellent agreement with the FEM/TMM calculations.

© 2011 OSA

OCIS Codes
(050.2230) Diffraction and gratings : Fabry-Perot
(130.3120) Integrated optics : Integrated optics devices
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Integrated Optics

History
Original Manuscript: October 6, 2011
Revised Manuscript: November 29, 2011
Manuscript Accepted: November 29, 2011
Published: December 12, 2011

Citation
Richard R. Grote, Jeffrey B. Driscoll, Claudiu G. Biris, Nicolae C. Panoiu, and Richard M. Osgood, "Weakly modulated silicon-dioxide-cladding gratings for silicon waveguide Fabry-Pérot cavities," Opt. Express 19, 26406-26415 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-27-26406


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. W. Fang, B. R. Koch, R. Jones, E. Lively, D. Liang, Y. Kuo, and J. E. Bowers, “A distributed Bragg reflector silicon evanescent laser,” IEEE Photon. Technol. Lett.20, 1667–1669 (2008). [CrossRef]
  2. Y. Halioua, A. Bazin, P. Monnier, T. J. Karle, I. Sagnes, G. Roelkens, D. Van Thourhout, F. Raineri, and R. Raj, “III–V photonic crystal wire cavity laser on silicon wafer,” J. Opt. Soc. Am. B27, 2146–2150 (2010). [CrossRef]
  3. T. E. Murphy, J. T. Hastings, and H. I. Smith, “Fabrication and characterization of narrow-band Bragg-reflection filters in silicon-on-insulator ridge waveguide,” J. Lightwave Technol.19, 1938–1942 (2001). [CrossRef]
  4. P. Muellner, R. Bruck, M. Karl, M. Baus, T. Wahlbrink, and R. Hainberger, “Silicon photonic wire Bragg grating for on-chip wavelength (de)multiplexing employing ring resonators,” in Integrated Photonics Research, Silicon and Nanophotonics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper IMF4.
  5. P. R. Villeneuve, D. S. Abrams, S. Fan, and J. D. Joannopoulos, “Single-mode waveguide microcavity for fast optical switching,” Opt. Lett.21, 2017–2019 (1996). [CrossRef] [PubMed]
  6. M. W. Pruessner, T. H. Stievater, M. S. Ferraro, and W. S. Rabinovich, “Thermo-optic tuning and switching in SOI waveguide Fabry-Perot microcavities,” Opt. Express15, 7557–7563 (2007). [CrossRef] [PubMed]
  7. M. Y. Liu and S. Y. Chou, “High-modulation-depth and short-cavity-length silicon Fabry-Perot modulator with two grating Bragg reflectors,” Appl. Phys. Lett.68, 170–172 (1996). [CrossRef]
  8. C. A. Barrios, V. R. De Almeida, and M. Lipson, “Low-power-consumption short-length and high-modulation-depth silicon electrooptic modulator,” J. Lightwave Technol.21, 1089–1098 (2003). [CrossRef]
  9. M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, “Integrated waveguide Fabry-Pérot microcavities with silicon/air Bragg mirrors,” Opt. Lett.32, 533–535 (2007). [CrossRef] [PubMed]
  10. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, Henry I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390, 143–145 (1997). [CrossRef]
  11. P. Velha, E. Picard, T. Charvolin, E. Hadji, J. C. Rodier, P. Lalanne, and D. Peyrade, “Ultra-high Q/V Fabry-Pérot microcavity on SOI substrate,” Opt. Express15, 16090–16096 (2007). [CrossRef] [PubMed]
  12. A. R. Md Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express16, 12084–12089 (2008). [CrossRef]
  13. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94, 121106 (2009). [CrossRef]
  14. M. Gnan, W. C. L. Hopman, G. Bellanca, R. M. de Ridder, R. M. De La Rue, and P. Bassi, “Closure of the stop-band in photonic wire Bragg gratings,” Opt. Express17, 8830–8842 (2009). [CrossRef] [PubMed]
  15. J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, “Optical waveguides with apodized sidewall gratings via spatial-phase-locked electron-beam lithography,” J. Vac. Sci. Technol. B20, 2753–2757 (2002). [CrossRef]
  16. I. Giuntoni, A. Gajda, M. Krause, R. Steingrber, J. Bruns, and K. Petermann, “Tunable Bragg reflectors on silicon-on-insulator rib waveguides,” Opt. Express17, 18518–18524 (2009). [CrossRef]
  17. I. Giuntoni, D. Stolarek, H. Richter, S. Marschmeyer, J. Bauer, A. Gajda, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, “Deep-UV technology for the fabrication of Bragg gratings on SOI Rib Waveguides,” IEEE Photon. Technol. Lett.24, 1894–1896 (2009). [CrossRef]
  18. G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg gratings in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett.23, 6–8 (2011).
  19. D. T. H. Tan, K. Ikeda, and Y. Fainman, “Cladding-modulated Bragg gratings in silicon waveguides,” Opt. Lett.34, 1357–1359 (2009). [CrossRef] [PubMed]
  20. X. Wang, W. Shi, R. Vafaei, N. A. F. Jaeger, and L. Chrostowski, “Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations,” IEEE Photon. Technol. Lett.23, 290–292 (2011).
  21. H. C. Kim, K. Ikeda, and Y. Fainman, “Resonant waveguide device with vertical gratings,” Opt. Lett.32, 539–541 (2007). [CrossRef] [PubMed]
  22. R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, and R. M. Osgood, “Ultracompact corner-mirrors and T-Branches in silicon-on-insulator,” IEEE Photon. Technol. Lett.14, 65–67 (2002). [CrossRef]
  23. R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Raman amplication in ultrasmall silicon-on-insulator wire waveguides,” Opt. Express12, 3713–3718 (2004). [CrossRef] [PubMed]
  24. A. Melloni, “Synthesis of direct-coupled-resonators bandpass filters for WDM systems,” J. Lightwave Technol.20, 296–303 (2002). [CrossRef]
  25. A. Yariv and P. Yeh, Photonics Photonics: Optical electronics in modern communications, 6th ed. (Oxford University Press, 2006).
  26. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, 1991).
  27. A. Melloni, M. Floridi, F. Morichetti, and M. Martinelli, “Equivalent circuit of Bragg gratings and its application to Fabry-Pérot cavities,” J. Opt. Soc. Am. A20, 273–281 (2003). [CrossRef]
  28. J. Mu, H. Zhang, and W. Huang, “Design of waveguide Bragg gratings with strong index corrugations,” J. Light-wave Technol.26, 1596–1601 (2008). [CrossRef]
  29. M. Gnan, H. Bellanca, H. M. H. Chong, P. Bassi, and R. M. De La Rue, “Modelling of photonic wire Bragg gratings,” Opt. Quantum Electron.38, 133148 (2006). [CrossRef]
  30. M. Hammer and O. V. Ivanova , “Effective index approximations of photonic crystal slabs: a 2-to-1-D assessment,” Opt. Quantum Electron., 41, 267–283 (2009). [CrossRef]
  31. RSoft Design Group, Inc. http://www.rsoftdesign.com .
  32. P. Lalanne and J. P. Hugonin, “Bloch-wave engineering for high-Q, small-V microcavities,” IEEE J. Quantum Electron.39, 1430–1438, (2003). [CrossRef]
  33. C. Sauvan, G. Lecamp, P. Lalanne, and J. P. Hugonin, “Modal-reflectivity enhancement by geometry tuning in photonic crystal microcavities,” Opt. Express13, 245–255 (2005). [CrossRef] [PubMed]
  34. M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoo, D. M. Lennon, S. Denault, F. Gan, F. X. Kärtner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett.19, 152–154 (2007). [CrossRef]
  35. M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, C. M. Wynn, S. T. Palmacci, F. Gan, F. X. Kärtner, and T. M. Lyszczarz, “All silicon infrared photodiodes: photo response and effects of processing temperature,” Opt. Express15, 16886–16895 (2007). [CrossRef] [PubMed]
  36. Soitec, http://www.soitec.com .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited