OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 27 — Dec. 19, 2011
  • pp: 26423–26428

Fiber-pigtailed temperature sensors based on dielectric-loaded plasmonic waveguide-ring resonators

Thomas B. Andersen, Sergey I. Bozhevolnyi, Laurent Markey, and Alain Dereux  »View Author Affiliations


Optics Express, Vol. 19, Issue 27, pp. 26423-26428 (2011)
http://dx.doi.org/10.1364/OE.19.026423


View Full Text Article

Enhanced HTML    Acrobat PDF (952 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate optical fiber-pigtailed temperature sensors based on dielectric-loaded surface plasmon-polariton waveguide-ring resonators (DLSPP-WRRs), whose transmission depends on the ambient temperature. The DLSPP-WRR-based temperature sensors represent polymer ridge waveguides (~1×1 µm2 in cross section) forming 5-µm-radius rings coupled to straight waveguides fabricated by UV-lithography on a 50-nm-thick gold layer atop a 2.3-µm-thick CYTOP layer covering a Si wafer. A broadband light source is used to characterize the DLSPP-WRR wavelength-dependent transmission in the range of 1480-1600 nm and to select the DLSPP-WRR component for temperature sensing. In- and out-coupling single-mode optical fibers are then glued to the corresponding access (photonic) waveguides made of 10-µm-wide polymer ridges. The sample is heated from 21°C to 46 °C resulting in the transmission change of ~0.7 dB at the operation wavelength of ~1510 nm. The minimum detectable temperature change is estimated to be ~5.1∙10−3 °C for the bandwidth of 1 Hz when using standard commercial optical detectors.

© 2011 OSA

OCIS Codes
(040.0040) Detectors : Detectors
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(230.0230) Optical devices : Optical devices
(240.6680) Optics at surfaces : Surface plasmons
(250.5460) Optoelectronics : Polymer waveguides
(070.5753) Fourier optics and signal processing : Resonators

ToC Category:
Sensors

History
Original Manuscript: October 11, 2011
Revised Manuscript: November 25, 2011
Manuscript Accepted: November 27, 2011
Published: December 12, 2011

Citation
Thomas B. Andersen, Sergey I. Bozhevolnyi, Laurent Markey, and Alain Dereux, "Fiber-pigtailed temperature sensors based on dielectric-loaded plasmonic waveguide-ring resonators," Opt. Express 19, 26423-26428 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-27-26423


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. R. N. Childs, J. R. Greenwood, and C. A. Long, “Review of temperature measurement,” Rev. Sci. Instrum.71(8), 2959–2978 (2000). [CrossRef]
  2. B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol.9(2), 57–79 (2003). [CrossRef]
  3. A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: A comprehensive review,” IEEE Sens. J.7(8), 1118–1129 (2007). [CrossRef]
  4. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010). [CrossRef]
  5. J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express18(2), 1207–1216 (2010). [CrossRef] [PubMed]
  6. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Dielectric-loaded plasmonic waveguide-ring resonators,” Opt. Express17(4), 2968–2975 (2009). [CrossRef] [PubMed]
  7. T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B75(24), 245405 (2007). [CrossRef]
  8. T. B. Andersen, Z. H. Han, and S. I. Bozhevolnyi, “Compact on-chip temperature sensors based on dielectric-loaded plasmonic waveguide-ring resonators,” Sensors (Basel Switzerland)11(2), 1992–2000 (2011). [CrossRef]
  9. Y. Wu, Y.-J. Rao, Y.-H. Chen, and Y. Gong, “Miniature fiber-optic temperature sensors based on silica/polymer microfiber knot resonators,” Opt. Express17(20), 18142–18147 (2009). [CrossRef] [PubMed]
  10. J. Gosciniak, V. S. Volkov, S. I. Bozhevolnyi, L. Markey, S. Massenot, and A. Dereux, “Fiber-coupled dielectric-loaded plasmonic waveguides,” Opt. Express18(5), 5314–5319 (2010). [CrossRef] [PubMed]
  11. O. Tsilipakos, E. E. Kriezis, and S. I. Bozhevolnyi, “Thermo-optic microring resonator switching elements made of dielectric-loaded plasmonic waveguides,” J. Appl. Phys.109(7), 073111 (2011). [CrossRef]
  12. S. Randhawa, A. V. Krasavin, T. Holmgaard, J. Renger, S. I. Bozhevolnyi, A. V. Zayats, and R. Quidant, “Experimental demonstration of dielectric-loaded plasmonic waveguide disk resonators at telecom wavelengths,” Appl. Phys. Lett.98(16), 161102 (2011). [CrossRef]
  13. A. Kumar, J. Gosciniak, T. B. Andersen, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Power monitoring in dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express19(4), 2972–2978 (2011). [CrossRef] [PubMed]
  14. J.-C. Weeber, K. Hassan, A. Bouhelier, G. Colas-des-Francs, J. Arocas, L. Markey, and A. Dereux, “Thermo-electric detection of waveguided surface plasmon propagation,” Appl. Phys. Lett.99(3), 031113 (2011). [CrossRef]
  15. S. Papaioannou, K. Vyrsokinos, O. Tsilipakos, A. Pitilakis, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, S. I. Bozhevolnyi, A. Miliou, E. E. Kriezis, and N. Pleros, “A 320 Gb/s-throughput capable 2×2 silicon-plasmonic router architecture for optical interconnects,” J. Lightwave Technol.29(21), 3185–3195 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited