OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 27 — Dec. 19, 2011
  • pp: 26451–26462

Enhanced resolution of microscopic objects by image inversion interferometry

D. Weigel, R. Foerster, H. Babovsky, A. Kiessling, and R. Kowarschik  »View Author Affiliations

Optics Express, Vol. 19, Issue 27, pp. 26451-26462 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1431 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate in experiment that the resolution of a conventional light microscope can be enhanced by 26% with the help of an image inverting interferometer. In order to prove this statement, we measured the point spread function of the system as well as the resolution of two-point objects. Additionally, the contrast transmission function of the interferometric setup was measured and compared to the results gained with a conventional wide-field microscope. Using the interferometric system, the spatial frequencies near the cutoff-frequency were far better transmitted than by the conventional microscope. Finally, we demonstrate the improved resolution with the help of images of two-dimensional structures.

© 2011 OSA

OCIS Codes
(110.0180) Imaging systems : Microscopy
(110.2970) Imaging systems : Image detection systems
(180.3170) Microscopy : Interference microscopy
(180.5810) Microscopy : Scanning microscopy
(350.5730) Other areas of optics : Resolution

ToC Category:

Original Manuscript: September 13, 2011
Revised Manuscript: November 18, 2011
Manuscript Accepted: November 20, 2011
Published: December 12, 2011

Virtual Issues
Vol. 7, Iss. 2 Virtual Journal for Biomedical Optics

D. Weigel, R. Foerster, H. Babovsky, A. Kiessling, and R. Kowarschik, "Enhanced resolution of microscopic objects by image inversion interferometry," Opt. Express 19, 26451-26462 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Abbe, Die Lehre von der Bildentstehung im Mikroskop (Friedrich Vieweg & Sohn, 1910).
  2. M. J. Rust, M. Bates, and X. W. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006). [CrossRef] [PubMed]
  3. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000). [CrossRef] [PubMed]
  4. S. A. Jones, S. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of living cells,” Nat. Methods 8, 499–505 (2011). [CrossRef] [PubMed]
  5. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,”Proc. Natl. Acad. Sci. USA (PNAS) 102, 13081–13086 (2005). [CrossRef]
  6. S. W. Hell and E. H. K. Stelzer, “Properties of a 4Pi confocal fluorescence microscope,” J. Opt. Soc. Am. A 9, 2159–2166 (1992). [CrossRef]
  7. J. Bewersdorf, A. Egner, and S. W. Hell, “4Pi Microscopy,” in Handbook of Biological Confocal Microscopy, 3rd ed., J.B. Pawley, eds. (SpringerScience+Business Media, New York, 2006), pp. 561–570. [CrossRef]
  8. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994). [CrossRef] [PubMed]
  9. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA (PNAS) 97, 8206–8210 (2000). [CrossRef]
  10. G. Donnert, J. Keller, C. A. Wurm, S. O. Rizzoli, V. Westphal, A. Schoenle, R. Jahn, S. Jakobs, C. Eggeling, and S. W. Hell, “Two-color far-field fluorescence nanoscopy,” Biophys. J. 92, L67–69L (2007). [CrossRef] [PubMed]
  11. H. Gugel, J. Bewersdorf, S. Jakobs, J. Engelhardt, R. Storz, and S. W. Hell, “Cooperative 4Pi excitation and detection yields sevenfold sharper optical sections in live-cell microscopy,” Biophys. J. 87, 4146–4152 (2004). [CrossRef] [PubMed]
  12. N. Sandeau and H. Giovannini, “Increasing the lateral resolution of 4pi fluorescence microscopes,” J. Opt. Soc. Am. A 23, 1089–1095 (2006). [CrossRef]
  13. H. Rigneault, N. Sandeau, and H. Giovannini, “Interferometric confocal microscope,” World Patent n°: WO/2007/141409 (2007).
  14. N. Sandeau, L. Wawrezinieck, P. Ferrand, H. Giovannini, and H. Rigneault, “Increasing the lateral resolution of scanning microscopes by a factor of two using 2-Image microscopy,” J. Eur. Opt. Soc. Rap. Public.,  4 (2009), p. 09040. [CrossRef]
  15. K. Wicker and R. Heintzmann, “Interferometric resolution improvement for confocal microscopes,” Opt. Express 15, 12206–12216 (2007). [CrossRef] [PubMed]
  16. D. Weigel, H. Babovsky, A. Kiessling, and R. Kowarschik, “Investigation of the impulse response of an image inversion interferometer,” Opt. Commun. 283, 368–372 (2010). [CrossRef]
  17. D. Weigel, H. Babovsky, A. Kiessling, and R. Kowarschik, “Investigation of the resolution ability of an image inversion interferometer,” Opt. Commun. 284, 2273–2277 (2011). [CrossRef]
  18. K. Wicker, S. Sindbert, and R. Heintzmann, “Characterisation of a resolution enhancing image inversion interferometer,” Opt. Express 17, 15491–15501 (2009). [CrossRef] [PubMed]
  19. J. W. Goodmann, Introduction to Fourier Optics (McGraw-Hill Classic Textbook Reissue, 1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited