OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 27 — Dec. 19, 2011
  • pp: 26515–26528

Angular-momentum coupled optical waves in chirally-coupled-core fibers

Xiuquan Ma, Chi-Hung Liu, Guoqing Chang, and Almantas Galvanauskas  »View Author Affiliations

Optics Express, Vol. 19, Issue 27, pp. 26515-26528 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2526 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new type of interaction between optical waves occurs in chirally-coupled-core (CCC) fibers. Instead of linear-translational symmetry of conventional cylindrical fibers, CCC fibers are helical-translation symmetric, and, consequently, interaction between CCC fiber modes involves both spin and orbital angular momentum of the waves. Experimentally this has been verified by observing a multitude of new phase-matching resonances in the transmitted super-continuum spectrum, and theoretically explained through modal theory developed in helical reference frame. This enables new degrees of freedom in controlling fiber modal properties.

© 2011 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(140.3510) Lasers and laser optics : Lasers, fiber
(270.0270) Quantum optics : Quantum optics

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: July 12, 2011
Revised Manuscript: August 25, 2011
Manuscript Accepted: November 29, 2011
Published: December 13, 2011

Xiuquan Ma, Chi-Hung Liu, Guoqing Chang, and Almantas Galvanauskas, "Angular-momentum coupled optical waves in chirally-coupled-core fibers," Opt. Express 19, 26515-26528 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. K. Kao, “Nobel Lecture: sand from centuries past: send future voices fast,” Rev. Mod. Phys. 82(3), 2299–2303 (2010). [CrossRef]
  2. J. L. Hall, “Nobel Lecture: defining and measuring optical frequencies,” Rev. Mod. Phys. 78(4), 1279–1295 (2006). [CrossRef]
  3. B. E. A. M. Saleh and C. Teich, Fundamentals of Photonics, 2nd ed.(Wiley, New Jersey, 2007).
  4. J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998). [CrossRef] [PubMed]
  5. L. Allen, S. M. Barnett, and M. J. Padgett, Optical Angular Momentum (I.O.P. Publishing, London, 2003).
  6. X. Ma, I. N. Hu, and A. Galvanauskas, “Propagation Length Independent Nonlinearity Threshold in Stokes-Wave Suppressed SRS in Chirally-Coupled-Core Fibers,” Nonlinear Optics conference at Kauai, Hawaii, USA, July 17–22, 2011.
  7. R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50(2), 115–125 (1936). [CrossRef]
  8. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992). [CrossRef] [PubMed]
  9. K. T. Gahagan and G. A. Swartzlander., “Optical vortex trapping of particles,” Opt. Lett. 21(11), 827–829 (1996). [CrossRef] [PubMed]
  10. M. Dienerowitz, M. Mazilu, P. J. Reece, T. F. Krauss, and K. Dholakia, “Optical vortex trap for resonant confinement of metal nanoparticles,” Opt. Express 16(7), 4991–4999 (2008). [CrossRef] [PubMed]
  11. G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004). [CrossRef] [PubMed]
  12. G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007). [CrossRef]
  13. U. Peschel, T. Peschel, and F. Lederer, “A compact device for highly efficient dispersion compensation in fiber transmission,” Appl. Phys. Lett. 67(15), 2111–2113 (1995). [CrossRef]
  14. A. W. Snyder and J. D. Love, “Reflection at a curved dielectric interface—electromagnetic tunneling,” IEEE Trans. Microw. Theory Tech. 23(1), 134–141 (1975). [CrossRef]
  15. D. Marcuse, “Curvature loss formula for optical fibers,” J. Opt. Soc. Am. 66(3), 216–220 (1976). [CrossRef]
  16. J. L. Wilson, C. Wang, A. E. Fathy, and Y. W. Kang, “Analysis of rapidly twisted hollow waveguides,” IEEE Trans. Microw. Theory Tech. 57(1), 130–139 (2009). [CrossRef]
  17. A. Nicolet, F. Zolla, and S. Guenneau, “Modelling of twisted optical waveguides with edge elements,” Eur. Phys. J. Appl. Phys. 28(2), 153–157 (2004). [CrossRef]
  18. K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed. (Academic Press, MA, 2006).
  19. E. Snitzer, “Cylindrical dielectric fiber modes,” J. Opt. Soc. Am. 51(5), 491 (1961). [CrossRef]
  20. J. A. Buck, Fundamentals of Optical Fibers, 2nd ed. (Wiley, New Jersey, 2004).
  21. D. Gloge, “Weakly guiding fibers,” Appl. Opt. 10(10), 2252–2258 (1971). [CrossRef] [PubMed]
  22. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006). [CrossRef] [PubMed]
  23. R. Ulrich and A. Simon, “Polarization optics of twisted single-mode fibers,” Appl. Opt. 18(13), 2241–2251 (1979). [CrossRef] [PubMed]
  24. J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16(10), 7233–7243 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited