OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 27 — Dec. 19, 2011
  • pp: 26536–26550

Broadband absorption enhancement achieved by optical layer mediated plasmonic solar cell

Wenzhen Ren, Guanghui Zhang, Yukun Wu, Huaiyi Ding, Qinghe Shen, Kun Zhang, Junwen Li, Nan Pan, and Xiaoping Wang  »View Author Affiliations

Optics Express, Vol. 19, Issue 27, pp. 26536-26550 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2029 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a novel thin solar cell design, integrating plasmonic component with optical layer, for conspicuous performance improvement in organic (P3HT: PCBM) thin film solar cell. Despite the relatively simple structure, the designed solar cell can get strikingly high spectral performance with the short circuit current density (Jsc) enhancement up to 67%; and a nicely large Jsc enhancement over 50% can be easily obtained spanning rather a broad geometric parametric range. The mechanisms responsible for this significant and broadband absorption enhancement as well as the effects of intercalating a plasmonic nanoparticles (NPs) array and an optical layer are theoretically and systematically investigated by finite-difference time-domain calculations (FDTD). The origin of the dramatically increased absorption is believed to be the synergistic effect between 1) the enhanced electric field and forward scattering upon excitation of localized surface plasmon resonance (LSPR) of the NPs, and 2) the favorable redistributions of light field in the device due to the beneficial interference effect mediated by the optical layer. Such a design concept is quite versatile and can be easily extended to other thin film solar cell systems.

© 2011 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(240.6680) Optics at surfaces : Surface plasmons
(350.6050) Other areas of optics : Solar energy
(250.5403) Optoelectronics : Plasmonics
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Solar Energy

Original Manuscript: September 9, 2011
Revised Manuscript: November 21, 2011
Manuscript Accepted: November 28, 2011
Published: December 13, 2011

Wenzhen Ren, Guanghui Zhang, Yukun Wu, Huaiyi Ding, Qinghe Shen, Kun Zhang, Junwen Li, Nan Pan, and Xiaoping Wang, "Broadband absorption enhancement achieved by optical layer mediated plasmonic solar cell," Opt. Express 19, 26536-26550 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Kroon, M. Lenes, J. C. Hummelen, P. W. M. Blom, and B. De Boer, “Small bandgap polymers for organic solar cells,” Pol. Rev. 48(3), 531–582 (2008). [CrossRef]
  2. S. I. Na, B. K. Yu, S. S. Kim, D. Vak, T. S. Kim, J. S. Yeo, and D. Y. Kim, “Fully spray-coated ITO-free organic solar cells for low-cost power generation,” Sol. Energy Mater. Sol. Cells 94(8), 1333–1337 (2010). [CrossRef]
  3. P. Peumans, A. Yakimov, and S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys. 93(7), 3693–3723 (2003). [CrossRef]
  4. V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. (Deerfield Beach Fla.) 22(43), 4794–4808 (2010). [CrossRef] [PubMed]
  5. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008). [CrossRef] [PubMed]
  6. B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004). [CrossRef]
  7. C. J. Min, J. Li, G. Veronis, J. Y. Lee, S. H. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010). [CrossRef]
  8. J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011). [CrossRef] [PubMed]
  9. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010). [CrossRef] [PubMed]
  10. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008). [CrossRef]
  11. C. H. Kim, S.-H. Cha, S. C. Kim, M. Song, J. Lee, W. S. Shin, S.-J. Moon, J. H. Bahng, N. A. Kotov, and S.-H. Jin, “Silver nanowire embedded in P3HT:PCBM for high-efficiency hybrid photovoltaic device applications,” ACS Nano 5(4), 3319–3325 (2011). [CrossRef] [PubMed]
  12. W. L. Bai, Q. Q. Gan, G. F. Song, L. H. Chen, Z. Kafafi, and F. Bartoli, “Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics,” Opt. Express 18(S4Suppl 4), A620–A630 (2010). [CrossRef] [PubMed]
  13. S. J. Tsai, M. Ballarotto, D. B. Romero, W. N. Herman, H. C. Kan, and R. J. Phaneuf, “Effect of gold nanopillar arrays on the absorption spectrum of a bulk heterojunction organic solar cell,” Opt. Express 18(S4Suppl 4), A528–A535 (2010). [CrossRef] [PubMed]
  14. A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008). [CrossRef]
  15. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007). [CrossRef]
  16. M. A. Sefunc, A. K. Okyay, and H. V. Demir, “Volumetric plasmonic resonator architecture for thin-film solar cells,” Appl. Phys. Lett. 98(9), 093117 (2011). [CrossRef]
  17. L. Qian, J. Yang, R. Zhou, A. Tang, Y. Zheng, T.-K. Tseng, D. Bera, J. Xue, and P. H. Holloway, “Hybrid polymer-CdSe solar cells with a ZnO nanoparticle buffer layer for improved efficiency and lifetime,” J. Mater. Chem. 21(11), 3814–3817 (2011). [CrossRef]
  18. J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. L. Ma, X. Gong, and A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. (Deerfield Beach Fla.) 18(5), 572–576 (2006). [CrossRef]
  19. F.-C. Chen, J.-L. Wu, and Y. Hung, “Spatial redistribution of the optical field intensity in inverted polymer solar cells,” Appl. Phys. Lett. 96(19), 193304 (2010). [CrossRef]
  20. J. Gilot, I. Barbu, M. M. Wienk, and R. A. J. Janssen, “The use of ZnO as optical spacer in polymer solar cells: theoretical and experimental study,” Appl. Phys. Lett. 91(11), 113520 (2007). [CrossRef]
  21. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, New York, 1985).
  22. H. H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009). [CrossRef]
  23. Q. L. Gu, “Plasmonic metallic nanostructures for efficient absorption enhancement in ultrathin CdTe-based photovoltaic cells,” J. Phys. D Appl. Phys. 43(46), 465101 (2010). [CrossRef]
  24. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).
  25. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007). [CrossRef] [PubMed]
  26. J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41(12), 1710–1720 (2008). [CrossRef] [PubMed]
  27. Y. A. Akimov, W. S. Koh, and K. Ostrikov, “Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes,” Opt. Express 17(12), 10195–10205 (2009). [CrossRef] [PubMed]
  28. B. J. Wiley, S. H. Im, Z. Y. Li, J. McLellan, A. Siekkinen, and Y. A. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis,” J. Phys. Chem. B 110(32), 15666–15675 (2006). [CrossRef] [PubMed]
  29. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003). [CrossRef] [PubMed]
  30. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008). [CrossRef] [PubMed]
  31. T. A. M. Ferenczi, J. Nelson, C. Belton, A. M. Ballantyne, M. Campoy-Quiles, F. M. Braun, and D. D. C. Bradley, “Planar heterojunction organic photovoltaic diodes via a novel stamp transfer process,” J. Phys. Condens. Matter 20(47), 475203 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited