OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 27 — Dec. 19, 2011
  • pp: 26610–26626

Optimising the efficiency of pulsed diode pumped Yb:YAG laser amplifiers for ns pulse generation.

K. Ertel, S. Banerjee, P. D. Mason, P. J. Phillips, M. Siebold, C. Hernandez-Gomez, and J. C. Collier  »View Author Affiliations


Optics Express, Vol. 19, Issue 27, pp. 26610-26626 (2011)
http://dx.doi.org/10.1364/OE.19.026610


View Full Text Article

Enhanced HTML    Acrobat PDF (1036 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a numerical model of a pulsed, diode-pumped Yb:YAG laser amplifier for the generation of high energy ns-pulses. This model is used to explore how optical-to-optical efficiency depends on factors such as pump duration, pump spectrum, pump intensity, doping concentration, and operating temperature. We put special emphasis on finding ways to achieve high efficiency within the practical limitations imposed by real-world laser systems, such as limited pump brightness and limited damage fluence. We show that a particularly advantageous way of improving efficiency within those constraints is operation at cryogenic temperature. Based on the numerical findings we present a concept for a scalable amplifier based on an end-pumped, cryogenic, gas-cooled multi-slab architecture.

© 2011 OSA

OCIS Codes
(140.3280) Lasers and laser optics : Laser amplifiers
(140.5560) Lasers and laser optics : Pumping
(140.3538) Lasers and laser optics : Lasers, pulsed
(140.3615) Lasers and laser optics : Lasers, ytterbium

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: November 11, 2011
Revised Manuscript: December 5, 2011
Manuscript Accepted: December 5, 2011
Published: December 14, 2011

Citation
K. Ertel, S. Banerjee, P. D. Mason, P. J. Phillips, M. Siebold, C. Hernandez-Gomez, and J. C. Collier, "Optimising the efficiency of pulsed diode pumped Yb:YAG laser amplifiers for ns pulse generation.," Opt. Express 19, 26610-26626 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-27-26610


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. C. Erlandson, S. M. Aceves, A. J. Bayramian, A. L. Bullington, R. J. Beach, C. D. Boley, J. A. Caird, R. J. Deri, A. M. Dunne, D. L. Flowers, M. A. Henesian, K. R. Manes, E. I. Moses, S. I. Rana, K. I. Schaffers, M. L. Spaeth, C. J. Stolz, and S. J. Telford, “Comparison of Nd:phosphate glass, Yb:YAG and Yb:S-FAP laser beamlines for laser inertial fusion energy (LIFE) [Invited],” Opt. Mater. Express1, 1341–1352 (2011) http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-7-1341 [CrossRef]
  2. J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. Rousseau, F. Burgy, and V. Malka, “A laser-plasma accelerator producing monoenergetic electron beams,” Nature431, 541–544 (2004). [CrossRef] [PubMed]
  3. H. Schwoerer, S. Pfotenhauer, O. Jackel, K. Amthor, B. Liesfeld, W. Ziegler, R. Sauerbrey, K. Ledingham, and T. Esirkepov, “Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets,” Nature439, 445–448 (2006). [CrossRef] [PubMed]
  4. S. Kneip, S. R. Nagel, C. Bellei, N. Bourgeois, A. E. Dangor, A. Gopal, R. Heathcote, S. P. D. Mangles, J. R. Marquès, A. Maksimchuk, P. M. Nilson, K. T. Phuoc, S. Reed, M. Tzoufras, F. S. Tsung, L. Willingale, W. B. Mori, A. Rousse, K. Krushelnick, and Z. Najmudin, “Observation of synchrotron radiation from electrons accelerated in a petawatt-laser-generated plasma cavity,” Phys. Rev. Lett. 100, 105006 (2008). [CrossRef] [PubMed]
  5. V. Malka, J. Faure, Y. A. Gauduel, E. Lefebvre, A. Rousse, and K. T. Phuoc, “Principles and applications of compact laser-plasma accelerators,” Nat. Phys. 4, 447–453 (2008). [CrossRef]
  6. E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys. 81, 1229–1285 (2009). [CrossRef]
  7. M. Dunne, “A high-power laser fusion facility for Europe,” Nat. Phys. 2, 2–5 (2006). [CrossRef]
  8. “The HiPER project,” http://www.hiper-laser.org .
  9. J.-P. Chambaret, O. Chekhlov, G. Cheriaux, J. Collier, R. Dabu, P. Dombi, A. M. Dunne, K. Ertel, P. Georges, J. Hebling, J. Hein, C. Hernandez-Gomez, C. Hooker, S. Karsch, G. Korn, F. Krausz, C. L. Blanc, Z. Major, F. Mathieu, T. Metzger, G. Mourou, P. Nickles, K. Osvay, B. Rus, W. Sandner, G. Szabó, D. Ursescu, and K. Varjú, “Extreme Light Infrastructure: laser architecture and major challenges,” Proc. SPIE7721, 77211D (2010). [CrossRef]
  10. “ELI - the Extreme Light Infrastructure, ” http://www.extreme-light-infrastructure.eu .
  11. G. Miller, E. Moses, and C. Wuest, “The national ignition facility,” Opt. Eng. 43, 2841–2853 (2004). [CrossRef]
  12. M. Andre, “The French megajoule laser project (LMJ),” Fusion Eng. Des. 44, 43–49 (1999). [CrossRef]
  13. C. Danson, P. Brummitt, R. Clarke, J. Collier, B. Fell, A. Frackiewicz, S. Hancock, S. Hawkes, C. Hernandez-Gomez, P. Holligan, M Hutchinson, A. Kidd, W. Lester, I. Musgrave, D. Neely, D. Neville, P. Norreys, D. Pepler, C. Reason, W. Shaikh, T. Winstone, R. Wyatt, and B. Wyborn, “Vulcan Petawatt - an ultra-high-intensity interaction facility,” Nucl. Fusion44, 239–246 (2004). [CrossRef]
  14. R. M. Yamamoto, J. M. Parker, K. L. Allen, R. W. Allmon, K. F. Alviso, C. P. J. Barty, B. S. Bhachu, C. D. Boley, A. K. Burnham, R. L. Combs, K. P. Cutter, S. N. Fochs, S. A. Gonzales, R. L. Hurd, K. N. LaFortune, W. J. Manning, M. A. McClelland, R. D. Merrill, L. Molina, C. W. Parks, P. H. Pax, A. S. Posey, M. D. Rotter, B. M. Roy, A. M. Rubenchik, T. F. Soules, and D. E. Webb, “Evolution of a solid state laser,” Proc. SPIE6552, 655205 (2007). [CrossRef]
  15. A. Bayramian, P. Armstrong, E. Ault, R. Beach, C. Bibeau, J. Caird, R. Campbell, B. Chai, J. Dawson, C. Ebbers, A. Erlandson, Y. Fei, B. Freitas, R. Kent, Z. Liao, T. Ladran, J. Menapace, B. Molander, S. Payne, N. Peterson, M. Randles, K. Schaffers, S. Sutton, J. Tassano, S. Telford, and E. Utterback, “The Mercury project: a high average power, gas-cooled laser for inertial fusion energy development,” Fusion Sci. Technol. 52, 383–387 (2007).
  16. D. Albach, M. Arzakantsyan, G. Bourdet, J.-C. Chanteloup, P. Hollander, and B. Vincent, “Current status of the LUCIA laser system,” J. Phys.: Conf. Ser. 244, 032015 (2010). [CrossRef]
  17. J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bodefeld, R. Sauerbrey, D. Ehrt, and W. Wintzer, “Diode-pumped chirped pulse amplification to the joule level,” Appl. Phys. B79, 419–422 (2004). [CrossRef]
  18. T. Fan, “Optimizing the efficiency and stored energy in quasi-three-level lasers,” IEEE J. Quantum Electron. 28, 2692 –2697 (1992). [CrossRef]
  19. G. Bourdet and O. Casagrande, “Effect of diode wavelength broadening in a diode end-pumped solid-state amplifier,” Appl. Opt. 46, 2709–2716 (2007). [CrossRef] [PubMed]
  20. M. Siebold, M. Loeser, U. Schramm, J. Koerner, M. Wolf, M. Hellwing, J. Hein, and K. Ertel, “High-efficiency, room-temperature nanosecond Yb:YAG laser,” Opt. Express17, 19887–19893 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-22-19887 . [CrossRef] [PubMed]
  21. P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, “Room-temperature diode-pumped Yb:YAG laser,” Opt. Lett. 14, 1089–1091 (1991). [CrossRef]
  22. T. Kasamatsu, H. Sekita, and Y. Kuwano, “Temperature dependence and optimization of 970-nm diode-pumped Yb:YAG and Yb:LuAG lasers,” Appl. Opt. 38, 5149–5153 (1999). [CrossRef]
  23. D. C. Brown, R. L. Cone, Y. C. Sun, and R. W. Equall, “Yb:YAG absorption at ambient and LF cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11, 604–612 (2005). [CrossRef]
  24. A. Siegman, Lasers, (University Science Books, 1986).
  25. J. B. Trenholme, “Fluorescence amplification and parasitic oscillation limitations in disc lasers,” Naval Research Laboratory Memorandum Rep. 2480, 1972.
  26. D. Albach, J.-C. Chanteloup, and G. Le Touzé, “Influence of ASE on the gain distribution in large size, high gain Yb3+:YAG slabs,” Opt. Express17, 3792–3801 (2009), http://www.opticsexpress.org/abstract.cfm?URI=oe-17-5-3792 . [CrossRef] [PubMed]
  27. G. Bogomolova, D. Vylegzhanin, and A. Kaminskii, “Spectral and lasing investigations of garnets with Yb3+ ions,” Sov. Phys. JETP42, 440–446 (1975).
  28. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B27, 63–92 (2010). [CrossRef]
  29. A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13, 598–609 (2007). [CrossRef]
  30. S. Nakai and K. Mima, “Laser driven inertial fusion energy: present and prospective,” Rep. Prog. Phys. 67, 321–349 (2004). [CrossRef]
  31. K. Ertel, C. Hooker, S. J. Hawkes, B. T. Parry, and J. L. Collier, “ASE suppression in a high energy titanium sapphire amplifier,” Opt. Express16, 8039–8049 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-11-8039 . [CrossRef] [PubMed]
  32. H. Yagi, J. F. Bisson, K. Ueda, and T. Yanagitani, “Y3Al5O12 ceramic absorbers for the suppression of parasitic oscillation in high-power Nd:YAG lasers,” J. Lumin. 121, 88–94 (2006). [CrossRef]
  33. S. B. Sutton and G. F. Albrecht, “Thermal management in inertial fusion energy slab amplifiers,” Proc. SPIE2633, 272–281 (1995). [CrossRef]
  34. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98, 103514 (2005). [CrossRef]
  35. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 448–459 (2007). [CrossRef]
  36. J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, “Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B20, 1975–1979 (2003). [CrossRef]
  37. J. Körner, J. Hein, M. Kahle, H. Liebetrau, M. Lenski, M. Kaluza, M. Loeser, and M. Siebold, “Temperature dependent measurement of absorption and emission cross sections for various Yb3+ doped laser materials,” Proc. SPIE8080, 808003 (2011). [CrossRef]
  38. K. Ertel, S. Banerjee, C. Hernandez-Gomez, P. D. Mason, J. Phillips, and J. Collier, “Performance Modelling of a 1 kJ DPSSL System,” in High Intensity Lasers and High Field Phenomena, OSA Technical Digest (CD) (Optical Society of America, 2011), paper HThE3.
  39. P. D. Mason, K. Ertel, S. Banerjee, P. J. Phillips, C. Hernandez-Gomez, and J. L. Collier, “Optimised design for a 1 kJ diode-pumped solid-state laser system,” Proc. SPIE8080, 80801X (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited