OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 27 — Dec. 19, 2011
  • pp: 26725–26732

Dispersion-compensated wavelength beam combining of quantum-cascade-laser arrays

Anish K. Goyal, Melissa Spencer, Oleg Shatrovoy, Benjamin G. Lee, Laurent Diehl, Christian Pfluegl, Antonio Sanchez, and Federico Capasso  »View Author Affiliations

Optics Express, Vol. 19, Issue 27, pp. 26725-26732 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (891 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A multiwavelength array of distributed feedback (DFB) quantum cascade lasers (QCLs) that spans λ = 8.28 to 9.62 μm is wavelength beam combined (WBC) using both single-grating and dual-grating designs. WBC with a single grating results in a pointing error of 3-times the beam divergence for a single laser and arises from the nonlinear dispersion of the grating. By adding a second grating to compensate for the nonlinear dispersion, the pointing error is reduced to only 13% of the beam divergence for a single laser. A transceiver based on the dual-grating-WBC QCL was used to measure the transmittance of a polymer sheet placed between itself and a retroreflector over a round-trip distance of 70 meters.

© 2011 OSA

OCIS Codes
(140.3290) Lasers and laser optics : Laser arrays
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(140.3298) Lasers and laser optics : Laser beam combining
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Lasers and Laser Optics

Original Manuscript: September 12, 2011
Revised Manuscript: November 5, 2011
Manuscript Accepted: November 7, 2011
Published: December 14, 2011

Anish K. Goyal, Melissa Spencer, Oleg Shatrovoy, Benjamin G. Lee, Laurent Diehl, Christian Pfluegl, Antonio Sanchez, and Federico Capasso, "Dispersion-compensated wavelength beam combining of quantum-cascade-laser arrays," Opt. Express 19, 26725-26732 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers,” Phys. Today 55(5), 34–40 (2002). [CrossRef]
  2. R. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010). [CrossRef]
  3. A. Kosterev and F. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38(6), 582–591 (2002). [CrossRef]
  4. R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, “External cavity quantum-cascade lasers tunable from 8.2 to 10.4 μm using a gain element with a heterogeneous cascade,” Appl. Phys. Lett. 88(20), 201113 (2006). [CrossRef]
  5. A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009). [CrossRef]
  6. Daylight Solutions, Inc., www.daylightsolutions.com .
  7. B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007). [CrossRef]
  8. B. G. Lee, H. A. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8 μm,” IEEE Photon. Technol. Lett. 21(13), 914–916 (2009). [CrossRef]
  9. B. G. Lee, M. A. Belkin, C. Pflügl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. P. Bour, S. W. Corzine, G. E. Höfler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45(5), 554–565 (2009). [CrossRef]
  10. T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron. 11(3), 567–577 (2005). [CrossRef]
  11. B. G. Lee, J. Kansky, A. K. Goyal, C. Pflügl, L. Diehl, M. A. Belkin, A. Sanchez, and F. A. Capasso, “Beam combining of quantum cascade laser arrays,” Opt. Express 17(18), 16216–16224 (2009). [CrossRef] [PubMed]
  12. S. Hugger, R. Aidam, W. Bronner, F. Fuchs, R. Lösch, Q. Yang, J. Wagner, E. Romasew, M. Raab, H. D. Tholl, B. Höfer, and A. L. Matthes, “Power scaling of quantum cascade lasers via multiemitter beam combining,” Opt. Eng. 49(11), 111111 (2010). [CrossRef]
  13. G. M. Russwurm and J. W. Childers, “Open-path Fourier Transform Infrared Spectroscopy,” in Handbook of Vibrational Spectroscopy, J. M. Chalmers and P. R. Griffiths, ed. (Wiley, 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited