OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 27 — Dec. 19, 2011
  • pp: 26752–26767

Second harmonic generation from 3D nanoantennas: on the surface and bulk contributions by far-field pattern analysis

Alessio Benedetti, Marco Centini, Mario Bertolotti, and Concita Sibilia  »View Author Affiliations


Optics Express, Vol. 19, Issue 27, pp. 26752-26767 (2011)
http://dx.doi.org/10.1364/OE.19.026752


View Full Text Article

Enhanced HTML    Acrobat PDF (1542 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We numerically study second harmonic generation from dipole gold nanoantennas by analyzing the different contributions of bulk and surface nonlinear terms. We focus our attention to the properties of the emitted field related to the different functional expressions of the two terms. The second harmonic field exhibits different far and near field patterns if both nonlinear contributions are taken into account or if only one of them is considered. This effect persists despite of the model used to estimate the parameters of the nonlinear sources and it is strictly related to the resonant behavior of the plasmonic nanostructure at the fundamental frequency field and to its linear properties at the second harmonic frequency. We show that the excitation of localized surface plasmon polaritons in these structures can remarkably modify the nonlinear response of the system by enhancing surface and/or bulk contributions, creating regimes where bulk nonlinear terms dominate over surface linear terms and vice versa. Finally, the results of our calculations suggest a method that could be implemented to experimentally extract information on the relevance of bulk and surface contributions by measuring and analyzing the generated far field second harmonic patterns in metal nanoantennas and, more in general, in plasmonic nanostructures.

© 2011 OSA

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(190.3970) Nonlinear optics : Microparticle nonlinear optics
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Nonlinear Optics

History
Original Manuscript: July 26, 2011
Revised Manuscript: September 10, 2011
Manuscript Accepted: September 12, 2011
Published: December 14, 2011

Citation
Alessio Benedetti, Marco Centini, Mario Bertolotti, and Concita Sibilia, "Second harmonic generation from 3D nanoantennas: on the surface and bulk contributions by far-field pattern analysis," Opt. Express 19, 26752-26767 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-27-26752


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett.288(2-4), 243–247 (1998). [CrossRef]
  2. H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Lett.80(10), 1826–1828 (2002). [CrossRef]
  3. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett.90(5), 057401 (2003). [CrossRef] [PubMed]
  4. C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett.6(4), 683–688 (2006). [CrossRef] [PubMed]
  5. L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett.6(9), 2060–2065 (2006). [CrossRef] [PubMed]
  6. H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett.6(4), 827–832 (2006). [CrossRef] [PubMed]
  7. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, (1983).
  8. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408(3-4), 131–314 (2005). [CrossRef]
  9. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express16(12), 9144–9154 (2008). [CrossRef] [PubMed]
  10. A. Rasmussen and V. Deckert, “Surface– and tip–enhanced Raman scattering of DNA components,” J. Raman Spectrosc.37(1-3), 311–317 (2006). [CrossRef]
  11. A. V. Whitney, J. W. Elam, S. L. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B109(43), 20522–20528 (2005). [CrossRef] [PubMed]
  12. Y. H. Joo, S. H. Song, R. Magnusson, and R. Magnusson, “Long-range surface plasmon-polariton waveguide sensors with a Bragg grating in the asymmetric double-electrode structure,” Opt. Express17(13), 10606–10611 (2009). [CrossRef]
  13. W. Zhang, H. Fischer, T. Schmid, R. Zenobi, and O. J. F. Martin, “Mode-Selective Surface-Enhanced Raman Spectroscopy Using Nanofabricated Plasmonic Dipole Antennas,” J. Phys. Chem. C113(33), 14672–14675 (2009). [CrossRef]
  14. H. Guo, T. P. Meyrath, T. Zentgraf, N. Liu, L. Fu, H. Schweizer, and H. Giessen, “Optical resonances of bowtie slot antennas and their geometry and material dependence,” Opt. Express16(11), 7756-7766 (2008).
  15. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a Bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009). [CrossRef]
  16. J. Li, A. Salandrino, and N. Engheta, “Optical spectrometer at the nanoscale using optical Yagi-Uda nanoantennas,” Phys. Rev. B79(19), 195104 (2009). [CrossRef]
  17. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329(5994), 930–933 (2010). [CrossRef] [PubMed]
  18. S. Jha, “Theory of optical harmonic generation at a metal surface,” Phys. Rev.140(6A), A2020–A2030 (1965). [CrossRef]
  19. N. Bloembergen, R. K. Chang, and C. H. Lee, “Second harmonic generation of light in reflection from media with inversion symmetry,” Phys. Rev. Lett.16(22), 986–989 (1966). [CrossRef]
  20. A. Liebsch, “Electronic Excitations at Metal Surfaces,” Plenum, New York, (1997). chap 5.
  21. J. C. Quail and H. J. Simon, “Second harmonic generation from silver and aluminium films in total internal reflection,” Phys. Rev. B31(8), 4900–4905 (1985). [CrossRef]
  22. G. A. Farias and A. A. Maradudin, “Second harmonic generation in reflection from a metallic grating,” Phys. Rev. B30(6), 3002–3015 (1984). [CrossRef]
  23. K. Li, M. I. Stockman, and D. J. Bergman, “Enhanced second harmonic generation in a self-similar chain of metal nanospheres,” Phys. Rev. B72(15), 153401 (2005). [CrossRef]
  24. J. I. Dadap, H. B. de Aguiar, and S. Roke, “Nonlinear light scattering from clusters and single particles,” J. Chem. Phys.130(21), 214710 (2009). [CrossRef] [PubMed]
  25. J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett.10(5), 1717–1721 (2010). [CrossRef] [PubMed]
  26. J. Butet, G. Bachelier, I. Russier-Antoine, C. Jonin, E. Benichou, and P. F. Brevet, “Interference between selected dipoles and octupoles in the optical second-harmonic generation from spherical gold nanoparticles,” Phys. Rev. Lett.105(7), 077401 (2010). [CrossRef] [PubMed]
  27. B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett.7(5), 1251–1255 (2007). [CrossRef] [PubMed]
  28. M. Zavelani-Rossi, M. Celebrano, P. Biagioni, D. Polli, M. Finazzi, L. Duò, G. Cerullo, M. Labardi, M. Allegrini, J. Grand, and P.-M. Adam, “Near-field second-harmonic generation in single gold nanoparticles,” Appl. Phys. Lett.92(9), 093119 (2008). [CrossRef]
  29. T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett.103(25), 257404 (2009). [CrossRef] [PubMed]
  30. A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, M. Bertolotti, A. Toma, D. Chiappe, and F. Buatier de Mongeot, “Tailored second harmonic generation from self-organized metal nano-wires arrays,” Opt. Express17(5), 3603–3609 (2009). [CrossRef] [PubMed]
  31. M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science313(5786), 502–504 (2006). [CrossRef] [PubMed]
  32. V. K. Valev, A. V. Silhanek, N. Verellen, W. Gillijns, P. Van Dorpe, O. A. Aktsipetrov, G. A. Vandenbosch, V. V. Moshchalkov, and T. Verbiest, “Asymmetric Optical Second-Harmonic Generation from Chiral G-Shaped Gold Nanostructures,” Phys. Rev. Lett.104(12), 127401 (2010). [CrossRef] [PubMed]
  33. V. K. Valev, A. V. Silhanek, Y. Jeyaram, D. Denkova, B. De Clercq, V. Petkov, X. Zheng, V. Volskiy, W. Gillijns, G. A. E. Vandenbosch, O. A. Aktsipetrov, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Hotspot Decorations Map Plasmonic Patterns with the Resolution of Scanning Probe Techniques,” Phys. Rev. Lett.106(22), 226803 (2011). [CrossRef] [PubMed]
  34. V. K. Valev, X. Zheng, C. G. Biris, A. V. Silhanek, V. Volskiy, B. De Clercq, O. A. Aktsipetrov, M. Ameloot, N. C. Panoiu, G. A. E. Vandenbosch, and V. V. Moshchalkov, “The Origin of Second Harmonic Generation Hotspots in Chiral Optical Metamaterials,” Opt. Mater. Express1(1), 36–45 (2011). [CrossRef]
  35. Y. Zeng and J. V. Moloney, “Volume electric dipole origin of second-harmonic generation from metallic membrane with noncentrosymmetric patterns,” Opt. Lett.34(18), 2844–2846 (2009). [CrossRef] [PubMed]
  36. F. X. Wang, F. J. Rodríguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B80(23), 233402 (2009). [CrossRef]
  37. C. G. Biris and N. C. Panoiu, “Second harmonic generation in metamaterials based on homogeneous centrosymmetric nanowires,” Phys. Rev. B81(19), 195102 (2010). [CrossRef]
  38. A. Benedetti, M. Centini, C. Sibilia, and M. Bertolotti, “Engineering the Second Harmonic Generation Pattern from Coupled Gold Nanowires,” J. Opt. Soc. Am. B27(3), 408 (2010). [CrossRef]
  39. Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, and J. V. Moloney, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B79(23), 235109 (2009). [CrossRef]
  40. W. L. Schaich, “Second harmonic genaration by periodically-structured metal surfaces,” Phys. Rev. B78(19), 195416 (2008). [CrossRef]
  41. M. Centini, A. Benedetti, C. Sibilia, and M. Bertolotti, “Coupled 2D Ag nano-resonator chains for enhanced and spatially tailored second harmonic generation,” Opt. Express19(Issue 9), 8218–8232 (2011). [CrossRef] [PubMed]
  42. M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A82(4), 043828 (2010). [CrossRef]
  43. J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett.83(20), 4045–4048 (1999). [CrossRef]
  44. J. V.an Bladel, “Electromagnetic Fields (2nd Edition),” IEEE Press Wiley (2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited