OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 27 — Dec. 19, 2011
  • pp: 26783–26795

Numerical simulation of optical Stark effect saturable absorbers in mode-locked femtosecond VECSELs using a modified two-level atom model.

A.H. Quarterman, S. Carswell, G.J. Daniell, Z. Mihoubi, K.G. Wilcox, A.L. Chung, V Apostolopoulos, and A.C. Tropper  »View Author Affiliations

Optics Express, Vol. 19, Issue 27, pp. 26783-26795 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (815 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The interaction of an optical pulse with a quantum well saturable absorber is simulated using a semi-classical two-level-atom model which has been modified to approximate spectral hole burning in the carrier distribution. Saturable absorption behaviour is examined in the limit where pulse duration approaches the carrier-carrier scattering time. For long pulses bleaching dominates the absorber response but as the pulse duration approaches the carrier-carrier scattering timescale an additional pulse shaping mechanism becomes active, allowing the absorber to continue to shorten pulses beyond the limit set by bleaching. Examination of the spectral and temporal absorption profiles suggests that intense pulses experience additional pulse shortening from the optical Stark effect.

© 2011 OSA

OCIS Codes
(020.6580) Atomic and molecular physics : Stark effect
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.5960) Lasers and laser optics : Semiconductor lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: August 15, 2011
Revised Manuscript: October 25, 2011
Manuscript Accepted: October 25, 2011
Published: December 14, 2011

A.H. Quarterman, S. Carswell, G.J. Daniell, Z. Mihoubi, K.G. Wilcox, A.L. Chung, V Apostolopoulos, and A.C. Tropper, "Numerical simulation of optical Stark effect saturable absorbers in mode-locked femtosecond VECSELs using a modified two-level atom model.," Opt. Express 19, 26783-26795 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics 3(12), 729–731 (2009). [CrossRef]
  2. P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 98(7), 071103 (2011). [CrossRef]
  3. P. Klopp, U. Griebner, M. Zorn, A. Klehr, A. Liero, M. Weyers, and G. Erbert, “Mode-locked InGaAs-AlGaAs disk laser generating sub-200-fs pulses, pulse picking and amplification by a tapered diode amplifier,” Opt. Express 17(13), 10820–10834 (2009). [CrossRef] [PubMed]
  4. K. G. Wilcox, Z. Mihoubi, G. J. Daniell, S. Elsmere, A. Quarterman, I. Farrer, D. A. Ritchie, and A. Tropper, “Ultrafast optical Stark mode-locked semiconductor laser,” Opt. Lett. 33(23), 2797–2799 (2008). [CrossRef] [PubMed]
  5. A. Garnache, S. Hoogland, A. C. Tropper, I. Sagnes, G. Saint-Girons, and J. S. Roberts, “Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100 mW average power,” Appl. Phys. Lett. 80(21), 3892–3894 (2002). [CrossRef]
  6. K. G. Wilcox, A. H. Quarterman, H. Beere, D. A. Ritchie, and A. C. Tropper, “High peak power femtosecond pulse passively mode-locked vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 22(14), 1021–1023 (2010). [CrossRef]
  7. O. D. Sieber, M. Hoffmann, D. J. Maas, V. J. Wittwer, M. Golling, T. Sudmeyer, and U. Keller, “Experimental confirmation of quasi-soliton pulse formation in ultrafast VECSELs,” in Advanced Solid State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2010), paper AMB26.
  8. A. Aschwanden, D. Lorenser, H. J. Unold, R. Paschotta, E. Gini, and U. Keller, “2.1-W picosecond passively mode-locked external-cavity semiconductor laser,” Opt. Lett. 30(3), 272–274 (2005). [CrossRef] [PubMed]
  9. M. Hoffmann, O. D. Sieber, D. J. H. C. Maas, V. J. Wittwer, M. Golling, T. Südmeyer, and U. Keller, “Experimental verification of soliton-like pulse-shaping mechanisms in passively mode-locked VECSELs,” Opt. Express 18(10), 10143–10153 (2010). [CrossRef] [PubMed]
  10. H. A. Haus and M. N. Islam, “Theory of the soliton laser,” IEEE J. Quantum Electron. 21(8), 1172–1188 (1985). [CrossRef]
  11. S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2(3), 454–464 (1996). [CrossRef]
  12. H. A. Haus, “Theory of mode-locking with a fast saturable absorber,” J. Appl. Phys. 46(7), 3049–3058 (1975). [CrossRef]
  13. G. J. Daniell, Z. Mihoubi, K. G. Wilcox, and A. C. Tropper, “Numerical model of the optical Stark effect as a mode-locking mechanism for femtosecond vertical-external-cavity surface-emitting semiconductor lasers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonics Applications Systems Technologies. OSA Technical Digest (CD)(Optical Society of America, 2008), paper CThF3.
  14. Z. Mihoubi, G. J. Daniell, K. G. Wilcox, and A. C. Tropper, “Numerical model of a vertical-external-cavity surface-emitting semiconductor lasers mode-locked by the optical Stark effect,” in Proceedings of the 8th International Conference on Numerical Simulation of Optoelectronic Devices. (IEEE, 2008), pp. 91–92.
  15. M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79(3), 331–339 (2004). [CrossRef]
  16. H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, 4th edition (World Scientific, 2004).
  17. J. V. Moloney, J. Hader, and S. W. Koch, “Quantum design of semiconductor active materials: laser and amplifier applications,” Laser Photonics Rev. 1(1), 24–43 (2007). [CrossRef]
  18. S. Balle, “Simple analytical approximations for the gain and refractive index spectra in quantum well lasers,” Phys. Rev. A 57(2), 1304–1312 (1998). [CrossRef]
  19. S. Balle, “Analytical description of spectral hole-burning effects in active semiconductors,” Opt. Lett. 27(21), 1923–1925 (2002). [CrossRef] [PubMed]
  20. J. Javaloyes and S. Balle, “Quasi-equilibrium time-domain susceptibility of semiconductor quantum wells,” Phys. Rev. A 81(6), 062505 (2010). [CrossRef]
  21. V. P. Kalosha, M. Muller, and J. Herrmann, “Theory of solid-state laser mode locking by coherent semiconductor quantum-well absorbers,” J. Opt. Soc. Am. B 16(2), 323 (1999). [CrossRef]
  22. L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, J. V. Moloney, W. Stolz, S. W. Koch, R. Bedford, and J. T. Murray, “Linearly polarised dual-wavelength vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 90(18), 181124 (2007). [CrossRef]
  23. A. Bäumner, S. W. Koch, and J. V. Moloney, “Non-equilibrium analysis of the two-color operation in semiconductor quantum-well lasers,” Phys. Status Solidi, B Basic Res. 248(4), 843–846 (2011). [CrossRef]
  24. W. W. Chow, S. W. Koch, and M. Sargent, Semiconductor-Laser Physics (Springer-Verlag, 1994).
  25. W. H. Knox, C. Hirlimann, D. A. B. Miller, J. Shah, D. S. Chemla, and C. V. Shank, “Femtosecond excitation of nonthermal carrier populations in GaAs quantum wells,” Phys. Rev. Lett. 56(11), 1191–1193 (1986). [CrossRef] [PubMed]
  26. W. H. Knox, D. S. Chemla, D. A. B. Miller, J. B. Stark, and S. Schmitt-Rink, “Femtosecond ac Stark effect in semiconductor quantum wells: Extreme low- and high-intensity limits,” Phys. Rev. Lett. 62(10), 1189–1192 (1989). [CrossRef] [PubMed]
  27. H. A. Haus, “Theory of mode-locking with a slow saturable absorber,” IEEE J. Quantum Electron. 11(9), 736–746 (1975). [CrossRef]
  28. M. E. Barnes, Z. Mihoubi, K. G. Wilcox, A. H. Quarterman, I. Farrer, D. A. Ritchie, A. Garnache, S. Hoogland, V. Apostolopoulos, and A. C. Tropper, “Gain bandwidth characterisation of surface-emitting quantum well laser gain structures for femtosecond operation,” Opt. Express 18(20), 21330–21341 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited