OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 27 — Dec. 19, 2011
  • pp: 26850–26858

Microcavity enhanced optical absorption in subwavelength slits

Changjun Min, Liu Yang, and Georgios Veronis  »View Author Affiliations


Optics Express, Vol. 19, Issue 27, pp. 26850-26858 (2011)
http://dx.doi.org/10.1364/OE.19.026850


View Full Text Article

Enhanced HTML    Acrobat PDF (915 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We introduce a compact submicron structure consisting of multiple optical microcavities at both the entrance and exit sides of a subwavelength plasmonic slit filled with an absorbing material. We show that such microcavity structures at the entrance side of the slit can greatly enhance the coupling of the incident light into the slit, by improving the impedance matching between the incident plane wave and the slit mode. In addition, the microcavity structures can also increase the reflectivities at both sides of the slit, and therefore the resonant field enhancement. Thus, such structures can greatly enhance the absorption cross section of the slit. An optimized submicron structure consisting of two microcavities at each of the entrance and exit sides of the slit leads to ~9.3 times absorption enhancement at the optical communication wavelength compared to an optimized slit without microcavities.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(260.5740) Physical optics : Resonance

ToC Category:
Physical Optics

History
Original Manuscript: October 13, 2011
Revised Manuscript: December 8, 2011
Manuscript Accepted: December 8, 2011
Published: December 15, 2011

Virtual Issues
Vol. 7, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Changjun Min, Liu Yang, and Georgios Veronis, "Microcavity enhanced optical absorption in subwavelength slits," Opt. Express 19, 26850-26858 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-27-26850


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998). [CrossRef]
  2. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett.26(24), 1972–1974 (2001). [CrossRef] [PubMed]
  3. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002). [CrossRef] [PubMed]
  4. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett.90(21), 213901 (2003). [CrossRef] [PubMed]
  5. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  6. D. C. Skigin and R. A. Depine, “Transmission resonances of metallic compound gratings with subwavelength slits,” Phys. Rev. Lett.95(21), 217402 (2005). [CrossRef] [PubMed]
  7. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007). [CrossRef] [PubMed]
  8. F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010). [CrossRef]
  9. Z. Yu, G. Veronis, and S. Fan, andM. L. Brongersma “Design of mid-infrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett.89(15), 151116 (2006). [CrossRef]
  10. J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett.34(5), 686–688 (2009). [CrossRef] [PubMed]
  11. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett.90(16), 167401 (2003). [CrossRef] [PubMed]
  12. F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J.-C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007). [CrossRef]
  13. T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys.44(12), L364–L366 (2005). [CrossRef]
  14. W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett.9(12), 4403–4411 (2009). [CrossRef] [PubMed]
  15. G. Gbur, H. F. Schouten, and T. D. Visser, “Achieving superresolution in near-field optical data readout systems using surface plasmons,” Appl. Phys. Lett.87(19), 191109 (2005). [CrossRef]
  16. J. Fujikata, T. Ishi, H. Yokota, K. Kato, M. Yanagisawa, M. Nakada, K. Ishihara, K. Ohashi, T. Thio, and R. A. Linke, “Surface plasmon enhancement effect and its application to near-field optical recording,” Trans. Magn. Soc. Jpn4, 255–259 (2004).
  17. S. Shinada, J. Hashizume, and F. Koyama, “Surface plasmon resonance on microaperture vertical-cavity surface-emitting laser with metal grating,” Appl. Phys. Lett.83(5), 836–838 (2003). [CrossRef]
  18. B. Guo, G. Song, and L. Chen, “Plasmonic very-small-aperture lasers,” Appl. Phys. Lett.91(2), 021103 (2007). [CrossRef]
  19. L. Verslegers, Z. Yu, P. B. Catrysse, and S. Fan, “Temporal coupled-mode theory for resonant apertures,” J. Opt. Soc. Am. B27(10), 1947–1956 (2010). [CrossRef]
  20. Q. Min and R. Gordon, “Surface plasmon microcavity for resonant transmission through a slit in a gold film,” Opt. Express16(13), 9708–9713 (2008). [CrossRef] [PubMed]
  21. L. Cao, J. S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett.10(4), 1229–1233 (2010). [CrossRef] [PubMed]
  22. G. Veronis and S. Fan, “Overview of simulation techniques for plasmonic devices,” in Surface Plasmon Nanophotonics, Mark L. Brongersma and Pieter G. Kik, eds. (Springer, 2007).
  23. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).
  24. J. Jin, The Finite Element Method in Electromagnetics (Wiley, New York, 2002).
  25. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed., (Artech House, Norwood, 2005).
  26. S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Top. Quantum Electron.14(6), 1462–1472 (2008). [CrossRef]
  27. K. Krishnakumar, “Micro-genetic algorithms for stationary and non-stationary function optimization,” Proc. SPIE1196, 289–296 (1989).
  28. G. Veronis and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,” Opt. Express15(3), 1211–1221 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited