OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 27 — Dec. 19, 2011
  • pp: 26936–26947

Low-voltage high-performance silicon photonic devices and photonic integrated circuits operating up to 30 Gb/s

Gyungock Kim, Jeong Woo Park, In Gyoo Kim, Sanghoon Kim, Sanggi Kim, Jong Moo Lee, Gun Sik Park, Jiho Joo, Ki-Seok Jang, Jin Hyuk Oh, Sun Ae Kim, Jong Hoon Kim, Jun Young Lee, Jong Moon Park, Do-Won Kim, Deog-Kyoon Jeong, Moon-Sang Hwang, Jeong-Kyoum Kim, Kyu-Sang Park, Han-Kyu Chi, Hyun-Chang Kim, Dong-Wook Kim, and Mu Hee Cho  »View Author Affiliations

Optics Express, Vol. 19, Issue 27, pp. 26936-26947 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2277 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present high performance silicon photonic circuits (PICs) defined for off-chip or on-chip photonic interconnects, where PN depletion Mach-Zehnder modulators and evanescent-coupled waveguide Ge-on-Si photodetectors were monolithically integrated on an SOI wafer with CMOS-compatible process. The fabricated silicon PICoff-chip for off-chip optical interconnects showed operation up to 30 Gb/s. Under differential drive of low-voltage 1.2 Vpp, the integrated 1 mm-phase-shifter modulator in the PICoff-chip demonstrated an extinction ratio (ER) of 10.5dB for 12.5 Gb/s, an ER of 9.1dB for 20 Gb/s, and an ER of 7.2 dB for 30 Gb/s operation, without adoption of travelling-wave electrodes. The device showed the modulation efficiency of VπLπ ~1.59 Vcm, and the phase-shifter loss of 3.2 dB/mm for maximum optical transmission. The Ge photodetector, which allows simpler integration process based on reduced pressure chemical vapor deposition exhibited operation over 30 Gb/s with a low dark current of 700 nA at −1V. The fabricated silicon PICintra-chip for on-chip (intra-chip) photonic interconnects, where the monolithically integrated modulator and Ge photodetector were connected by a silicon waveguide on the same chip, showed on-chip data transmissions up to 20 Gb/s, indicating potential application in future silicon on-chip optical network. We also report the performance of the hybrid silicon electronic-photonic IC (EPIC), where a PICintra-chip chip and 0.13μm CMOS interface IC chips were hybrid-integrated.

© 2011 OSA

OCIS Codes
(040.5160) Detectors : Photodetectors
(040.6040) Detectors : Silicon
(060.4510) Fiber optics and optical communications : Optical communications
(130.0250) Integrated optics : Optoelectronics
(130.3120) Integrated optics : Integrated optics devices
(200.4650) Optics in computing : Optical interconnects
(250.5300) Optoelectronics : Photonic integrated circuits
(250.7360) Optoelectronics : Waveguide modulators
(130.4110) Integrated optics : Modulators

ToC Category:
Integrated Optics

Original Manuscript: October 19, 2011
Revised Manuscript: November 30, 2011
Manuscript Accepted: December 8, 2011
Published: December 16, 2011

Gyungock Kim, Jeong Woo Park, In Gyoo Kim, Sanghoon Kim, Sanggi Kim, Jong Moo Lee, Gun Sik Park, Jiho Joo, Ki-Seok Jang, Jin Hyuk Oh, Sun Ae Kim, Jong Hoon Kim, Jun Young Lee, Jong Moon Park, Do-Won Kim, Deog-Kyoon Jeong, Moon-Sang Hwang, Jeong-Kyoum Kim, Kyu-Sang Park, Han-Kyu Chi, Hyun-Chang Kim, Dong-Wook Kim, and Mu Hee Cho, "Low-voltage high-performance silicon photonic devices and photonic integrated circuits operating up to 30 Gb/s," Opt. Express 19, 26936-26947 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006). [CrossRef]
  2. C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE. Micro. 26(2), 58–66 (2006). [CrossRef]
  3. A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008). [CrossRef]
  4. D. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009). [CrossRef]
  5. K. Preston, L. Chen, S. Manipatruni, and M. Lipson, “Silicon photonic interconnect with micrometer-scale devices,” 6th International Conference on Group IV Photonics, WA2, 1–3 (2009).
  6. A. Narasimha, S. Abdaila, C. Bradbury, A. Clark, J. Clymore, J. Coyne, A. Dahl, S. Gloeckner, A. Gruenberg, D. Guckenberger, S. Gutierrez, M. Harrison, D. Kucharski, K. Leap, R. LeBlanc, V. Liang, M. Mack, D. Martinez, G. Masini, A. Mekis, R. Menigoz, C. Ogden, M. Peterson, T. Pinguet, J. Redman, J. Rodriguez, S. Sahni, M. Sharp, T. Sleboda, D. Song, V. Wang, B. Welch, J. Witzens, W. Xu, K. Vokoyama, and P. DobbeIaere, “An ultra low power CMOS photonics technology platform for H/S optoelectronic transceivers at less than $1 per Gbps,” in Proc. OFC 2010, San Diego, USA (2010).
  7. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987). [CrossRef]
  8. L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, M. Paniccia, N. Izhaky, and M. Paniccia, “40Gbit/s silicon optical modulator high-speed applications,” Electron. Lett. 43(22), 1196–1197 (2007). [CrossRef]
  9. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007). [CrossRef] [PubMed]
  10. W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007). [CrossRef] [PubMed]
  11. J. W. Park, J.-B. You, I. G. Kim, and G. Kim, “High-modulation efficiency silicon Mach-Zehnder optical modulator based on carrier depletion in a PN Diode,” Opt. Express 17(18), 15520–15524 (2009). [CrossRef] [PubMed]
  12. J.-B. You, M. Park, J.-W. Park, and G. Kim, “12.5 Gbps optical modulation of silicon racetrack resonator based on carrier-depletion in asymmetric p-n diode,” Opt. Express 16(22), 18340–18344 (2008). [CrossRef] [PubMed]
  13. P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17(25), 22484–22490 (2009). [CrossRef] [PubMed]
  14. N. N. Feng, S. Liao, D. Feng, P. Dong, D. Zheng, H. Liang, R. Shafiiha, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed carrier-depletion modulators with 1.4V-cm V(π)L integrated on 0.25microm silicon-on-insulator waveguides,” Opt. Express 18(8), 7994–7999 (2010). [CrossRef] [PubMed]
  15. F. Y. Gardes, D. J. Thomson, N. G. Emerson, and G. T. Reed, “40 Gb/s silicon photonics modulator for TE and TM polarizations,” Opt. Express 19(12), 11804–11814 (2011). [CrossRef]
  16. D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J.-M. Fedeli, and G. T. Reed, “High contrast 40Gbit/s optical modulation in silicon,” Opt. Express 19(12), 11507–11516 (2011). [CrossRef] [PubMed]
  17. G. Rasigade, M. Ziebell, D. Marris-Morini, J.-M. Fédéli, F. Milesi, P. Grosse, D. Bouville, E. Cassan, and L. Vivien, “High extinction ratio 10 Gbit/s silicon optical modulator,” Opt. Express 19(7), 5827–5832 (2011). [CrossRef] [PubMed]
  18. M. Watts, W. Zortman, D. Trotter, R. Young, and A. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach–Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 159–164 (2010). [CrossRef]
  19. D. Ahn, C. Y. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kärtner, “High performance, waveguide integrated Ge photodetectors,” Opt. Express 15(7), 3916–3921 (2007). [CrossRef] [PubMed]
  20. L. Vivien, J. Osmond, J. M. Fédéli, D. Marris-Morini, P. Crozat, J. F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, “42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express 17(8), 6252–6257 (2009). [CrossRef] [PubMed]
  21. D. Feng, S. Liao, P. Dong, N. Feng, H. Liang, D. Zheng, C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95(26), 261105 (2009). [CrossRef]
  22. H. Yu, S. Ren, W. Jung, A. Okyay, D. Miller, and K. Saraswat, “High-efficiency p-i-n photodetectors on selective-area-grown Ge for monolithic integration,” IEEE Electron Device Lett. 30(11), 1161–1163 (2009). [CrossRef]
  23. S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010). [CrossRef] [PubMed]
  24. S. Liao, N. N. Feng, D. Feng, P. Dong, R. Shafiiha, C. C. Kung, H. Liang, W. Qian, Y. Liu, J. Fong, J. E. Cunningham, Y. Luo, and M. Asghari, “36 GHz submicron silicon waveguide germanium photodetector,” Opt. Express 19(11), 10967–10972 (2011). [CrossRef] [PubMed]
  25. M. Morse, O. Dosunmu, T. Yin, Y. Kang, H. D. Liu, G. Sarid, E. Ginsburg, R. Cohen, S. Litski, and M. Zadka, “Performance of Ge/Si receivers at 1310 nm,” Physica E 41(6), 1076–1081 (2009). [CrossRef]
  26. Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nature Photon. 3, 59–63 (2009).
  27. M. Jutzi, M. Berroth, G. Wöhl, M. Oehme, and E. Kasper, “Ge-on-Si vertical incidence photodiodes with 39-GHz bandwidth,” IEEE Photon. Technol. Lett. 17(7), 1510–1512 (2005). [CrossRef]
  28. D. Suh, S. Kim, J. Joo, and G. Kim, “36-GHz high-responsivity Ge photodetectors grown by RPCVD,” IEEE Photon. Technol. Lett. 21(10), 672–674 (2009). [CrossRef]
  29. J. Joo, S. Kim, I. Kim, K. Jang, and G. Kim, “High- sensitivity 10 Gbps Ge-on- Si photoreceiver operating at λ ~ 1.55 µm,” Opt. Express 18, 16474–16479 (2010). [CrossRef] [PubMed]
  30. J. Joo, S. Kim, I. Kim, K. Jang, and G. Kim, “Progress in high-responsivity vertical-illumination type Ge-on-Si photodetecor operating at λ ~1.55 μm,” in Proc. OFC 2011, Los Angeles, USA (2011).
  31. T. Pinguet, B. Analui, E. Balmater, D. Guckenberger, M. Harrison, R. Koumans, D. Kucharski, Y. Liang, G. Masini, A. Mekis, S. Mirsaidi, A. Narasimha, M. Peterson, D. Rines, V. Sadagopan, S. Sahni, T. J. Sleboda, D. Song, Y. Wang, B. Welch, J. Witzens, J. Yao, S. Abdalla, S. Gloeckner, P. De Dobbelaere, and G. Capellini, “Monolithically Integrated High-Speed CMOS Photonic Transceivers,” in Proc. IEEE Int. Conf. Group IV Photonics, 362–364 (2008).
  32. X. Zheng, F. Liu, D. Patil, H. Thacker, Y. Luo, T. Pinguet, A. Mekis, J. Yao, G. Li, J. Shi, K. Raj, J. Lexau, E. Alon, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “A sub-picojoule-per-bit CMOS photonic receiver for densely integrated systems,” Opt. Express 18(1), 204–211 (2010). [CrossRef] [PubMed]
  33. T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon modulators and germanium photodetectors on SOI: Monolithic integration, compatibility, and performance optimization,” IEEE Sel. Top. Quantum Electron. 16(1), 307–315 (2010). [CrossRef]
  34. M. Rasras, D. Gill, M. Earnshaw, C. Doerr, J. Weiner, C. Bolle, and Y. Chen, “CMOS silicon receiver integrated with Ge detector and reconfigurable optical filter,” IEEE Photon. Technol. Lett. 22(2), 112–114 (2010). [CrossRef]
  35. X. Zheng, D. Patil, J. Lexau, F. Liu, G. Li, H. Thacker, Y. Luo, I. Shubin, J. Li, J. Yao, P. Dong, D. Feng, M. Asghari, T. Pinguet, A. Mekis, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, E. Alon, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-efficient 10 Gb/s hybrid integrated silicon photonic transmitter and receiver,” Opt. Express 19(6), 5172–5186 (2011). [CrossRef] [PubMed]
  36. K. Park, B. Yoo, M. Hwang, H. Chi, H. Kim, J. Park, G. Kim, and D. Jeong, “A 10-Gb/s optical receiver front-end with 5-mW transimpedance amplifier,” IEEE Asian Solid-State Circuits Conference, Beijing, 3–5 (2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited