OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 1680–1690

Nonlinear dependence between the surface reflectance and the duty-cycle of semiconductor nanorod array

Yi-Hao Pai, Yu-Chan Lin, Jai-Lin Tsai, and Gong-Ru Lin  »View Author Affiliations


Optics Express, Vol. 19, Issue 3, pp. 1680-1690 (2011)
http://dx.doi.org/10.1364/OE.19.001680


View Full Text Article

Acrobat PDF (1234 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The nonlinear dependence between the duty-cycle of semiconductor nanorod array and its surface reflectance minimization is demonstrated. The duty-cycle control on thin-SiO2 covered Si nanorod array is performed by O2- plasma pre-etching the self-assembled polystyrene nanosphere array mask with area density of 4 × 108 rod/cm−2. The 120-nm high SiO2 covered Si nanorod array is obtained after subsequent CF4/O2 plasma etching for 160 sec. This results in a tunable nanorod diameter from 445 to 285 nm after etching from 30 to 80 sec, corresponding to a varying nanorod duty-cycle from 89% to 57%. The TM-mode reflection analysis shows a diminishing Brewster angle shifted from 71° to 54° with increasing nanorod duty-cycle from 57% to 89% at 532 nm. The greatly reduced small-angle reflectance reveals a nonlinear trend with enlarging duty-cycle, leading to a minimum surface reflectance at nanorod duty-cycle of 85%. Both the simulation and experiment indicate that such a surface reflectance minimum is even lower than that of a uniformly SiO2 covered Si substrate on account of its periodical nanorod array architecture with tuned duty-cycle.

© 2011 OSA

OCIS Codes
(120.5700) Instrumentation, measurement, and metrology : Reflection
(310.1210) Thin films : Antireflection coatings
(220.4241) Optical design and fabrication : Nanostructure fabrication
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Thin Films

History
Original Manuscript: June 1, 2010
Revised Manuscript: July 10, 2010
Manuscript Accepted: August 3, 2010
Published: January 14, 2011

Citation
Yi-Hao Pai, Yu-Chan Lin, Jai-Lin Tsai, and Gong-Ru Lin, "Nonlinear dependence between the surface reflectance and the duty-cycle of semiconductor nanorod array," Opt. Express 19, 1680-1690 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-3-1680


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. G.-R. Lin, Y. H. Pai, and C. T. Lin, “Microwatt MOSLED using SiOx with buried Si nanocrystals on Si nano-pillar array,” J. Lightwave Technol. 26(11), 1486–1491 (2008). [CrossRef]
  2. F.-G. Tarntair, L.-C. Chen, S.-L. Wei, W.-K. Hong, K.-H. Chen, and H.-C. Cheng, “High current density field emission from arrays of carbon nanotubes and diamond-clad Si tips,” J. Vac. Sci. Technol. 18(3), 1207–1211 (2000). [CrossRef]
  3. C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17(22), 19371–19381 (2009). [CrossRef] [PubMed]
  4. J. Xiang, W. Lu, Y.-J. Hu, Y. Wu, H. Yan, and C.-M. Lieber, “Ge/Si nanowire heterostructures as high-performance field-effect transistors,” Nature 441(7092), 489–493 (2006). [CrossRef] [PubMed]
  5. Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett. 24(20), 1422–1424 (1999). [CrossRef] [PubMed]
  6. Y. Kanamori, M. Ishimori, and K. Hane, “High efficient light-emitting diodes with antireflection subwavelength gratings,” IEEE Photon. Technol. Lett. 14(8), 1064–1066 (2002). [CrossRef]
  7. S.-A. Boden and D.-M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008). [CrossRef]
  8. C.-J. Ting, M.-C. Huang, H.-Y. Tsai, C.-P. Chou, and C.-C. Fu, “Low cost fabrication of the large-area anti-reflection films from polymer by nanoimprint/hot-embossing technology,” Nanotechnology 19(20), 205301 (2008). [CrossRef]
  9. N. J. Trujillo, S. Baxamusa, and K. K. Gleason, “Grafted polymeric nanostructures patterned bottom-up by colloidal lithography and initiated chemical vapor deposition (iCVD),” Thin Solid Films 517(12), 3615–3618 (2009). [CrossRef]
  10. H. L. Chen, S. Y. Chuang, C. H. Lin, and Y. H. Lin, “Using colloidal lithography to fabricate and optimize sub-wavelength pyramidal and honeycomb structures in solar cells,” Opt. Express 15(22), 14793–14803 (2007). [CrossRef] [PubMed]
  11. P. Bettotti, M. Cazzanelli, L. Dal Negro, B. Danese, Z. Gaburro, C. J. Oton, G. V. Prakash, and L. Pavesi, “Silicon nanostructures for photonics,” J. Phys. Condens. Matter 14(35), 8253–8281 (2002). [CrossRef]
  12. W. Liu, W. Zhong, L. J. Qiu, L. Y. Lu, and Y. W. Du, “Fabrication and magnetic behaviour of 2D ordered Fe/SiO2 nanodots array,” Eur. Phys. J. B 51(4), 501–506 (2006). [CrossRef]
  13. P. Jiang and M. J. McFarland, “Large-scale fabrication of wafer-size colloidal crystals, macroporous polymers and nanocomposites by spin-coating,” J. Am. Chem. Soc. 126(42), 13778–13786 (2004). [CrossRef] [PubMed]
  14. C. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching,” Appl. Phys. Lett. 93(13), 133109 (2008). [CrossRef]
  15. M. Elwenspoek, and H. Jansen, “Silicon Micromachining”, Cambridge University Press: Cambridge, U.K. (1998).
  16. L. Yan, K. Wang, J. Wu, and L. Ye, “Hydrophobicity of model surfaces with loosely packed polystyrene spheres after plasma etching,” J. Phys. Chem. B 110(23), 11241–11246 (2006). [CrossRef] [PubMed]
  17. B. J.-Y. Tan, C.-H. Sow, K.-Y. Lim, F.-C. Cheong, G.-L. Chong, A. T.-S. Wee, and C.-K. Ong, “Fabrication of a two-dimensional periodic non-close-packed array of polystyrene particles,” J. Phys. Chem. B 108(48), 18575–18579 (2004). [CrossRef]
  18. A. Ruiz, A. Valsesia, G. Ceccone, D. Gilliland, P. Colpo, and F. Rossi, “Fabrication and characterization of plasma processed surfaces with tuned wettability,” Langmuir 23(26), 12984–12989 (2007). [CrossRef] [PubMed]
  19. K. Tsougeni, N. Vourdas, A. Tserepi, E. Gogolides, and C. Cardinaud, “Mechanisms of oxygen plasma nanotexturing of organic polymer surfaces: from stable super hydrophilic to super hydrophobic surfaces,” Langmuir 25(19), 11748–11759 (2009). [CrossRef] [PubMed]
  20. J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. F. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).
  21. T. Homma, A. Satoh, S. Okada, M. Itoh, M. Yamaguchi, and H. Takahashi, “Optical properties of fluorinated silicon oxide films by liquid phase deposition for optical waveguides,” IEEE Trans. Instrum. Meas. 47(3), 698–702 (1998). [CrossRef]
  22. G.-R. Lin, F. S. Meng, Y. H. Pai, Y. C. Chang, and S. H. Hsu, “Manipulative depolarization and reflectance spectra of morphologically controlled nano-pillars and nano-rods,” Opt. Express 17(23), 20824–20832 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited