OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 1734–1742

Bandwidth-narrowed Bragg gratings inscribed in double-cladding fiber by femtosecond laser

Jiawei Shi, Yuhua Li, Shuhui Liu, Haiyan Wang, Ningliang Liu, and Peixiang Lu  »View Author Affiliations

Optics Express, Vol. 19, Issue 3, pp. 1734-1742 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1256 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Bragg gratings with the bandwidth (FWHM) narrowed up to 79 pm were inscribed in double-cladding fiber with femtosecond radiation and a phase mask followed by an annealing treatment. With the annealing temperature below a critical value, the bandwidth of Bragg gratings induced by Type I-IR and Type II-IR index change was narrowed without the reduction of reflectivity. The bandwidth narrowing is due to the profile transformation of the refractive index modulation caused by the annealing treatment. This mechanism was verified by comparing bandwidth narrowing processes of FBGs written with different power densities.

© 2011 Optical Society of America

OCIS Codes
(320.7140) Ultrafast optics : Ultrafast processes in fibers
(350.3390) Other areas of optics : Laser materials processing
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: November 8, 2010
Revised Manuscript: January 11, 2011
Manuscript Accepted: January 11, 2011
Published: January 14, 2011

Jiawei Shi, Yuhua Li, Shuhui Liu, Haiyan Wang, Ningliang Liu, and Peixiang Lu, "Bandwidth-narrowed Bragg gratings inscribed in double-cladding fiber by femtosecond laser," Opt. Express 19, 1734-1742 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Othonos, and K. Kalli, Fiber Bragg gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).
  2. R. Kashyap, Fiber Bragg Gratings (Academic, 1999), 411–415.
  3. J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2, 275–289 (2008). [CrossRef]
  4. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993). [CrossRef]
  5. C. G. Askins, T.-E. Tsai, G. M. Williams, M. A. Putnam, M. Bashkansky, and E. J. Friebele, “Fiber Bragg reflectors prepared by a single excimer pulse,” Opt. Lett. 17, 833–835 (1992). [CrossRef] [PubMed]
  6. J. Albert, A. Schlzgen, V. L. Temyanko, S. Honkanen, and N. Peyghambarian, “Strong Bragg gratings in Phosphate Glass Single Mode Fiber,” Appl. Phys. Lett. 89, 101127 (2006). [CrossRef]
  7. S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22, 94–100 (2004). [CrossRef]
  8. M. Lenzner, J. Krger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998). [CrossRef]
  9. L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 28, 333–339 (2001). [CrossRef]
  10. Y. H. Li, C. R. Liao, D. N. Wang, T. Sun, and K. T. V. Grattan, “Study of spectral and annealing properties of fiber Bragg gratings written in H2-free and H2-loaded fibers by use of femtosecond laser pulses,” Opt. Express 16, 21239–21247 (2008). [CrossRef] [PubMed]
  11. M. Bernier, R. Valle, B. Morasse, C. Desrosiers, A. Saliminia, and Y. Sheng, “Ytterbium fiber laser based on first-order fiber Bragg gratings written with 400nm femtosecond pulses and a phase-mask,” Opt. Express 17, 18887–18893 (2009). [CrossRef]
  12. E. Wikszak, J. Thomas, S. Klingebiel, B. Ortac¸, J. Limpert, S. Nolte, and A. Tüunermann, “Linearly polarized ytterbium fiber laser based on intracore femtosecond-written fiber Bragg gratings,” Opt. Lett. 32, 2756–2758 (2007). [CrossRef] [PubMed]
  13. A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170–1172 (2004). [CrossRef]
  14. N. Jovanovic, M. Aslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, “Narrow linewidth, 100 W cw Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core,” Opt. Lett. 32, 2804–2806 (2007). [CrossRef] [PubMed]
  15. N. Jovanovic, A. Fuerbach, G. D. Marshall, M. J. Withford, and S. D. Jackson, “Stable high-power continuouswave Yb3+-doped silica fiber laser utilizing a point-by-pointinscribed fiber Bragg grating,” Opt. Lett. 32, 1486–1488 (2007). [CrossRef] [PubMed]
  16. C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29, 1730–1732 (2004). [CrossRef] [PubMed]
  17. C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13, 5377–5385 (2005). [CrossRef] [PubMed]
  18. C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Impact of index change saturation on the growth behavior of higher-order type I ultrafast induced fiber Bragg gratings,” J. Opt. Soc. Am. B 25, 877–883 (2008). [CrossRef]
  19. S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28, 995–997 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited