OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 1786–1793

Fiber-based cryogenic and time-resolved spectroscopy of PbS quantum dots

Matthew T. Rakher, Ranojoy Bose, Chee Wei Wong, and Kartik Srinivasan  »View Author Affiliations


Optics Express, Vol. 19, Issue 3, pp. 1786-1793 (2011)
http://dx.doi.org/10.1364/OE.19.001786


View Full Text Article

Enhanced HTML    Acrobat PDF (2390 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

PbS quantum dots are promising active emitters for use with high-quality Si nanophotonic devices in the telecommunications-band. Measurements of low quantum dot densities are limited both because of low fluorescence levels and the challenges of single photon detection at these wavelengths. Here, we report on methods using a fiber taper waveguide to efficiently extract PbS quantum dot photoluminescence. Temperature dependent ensemble measurements reveal an increase in emitted photons concomitant with an increase in excited-state lifetime from 58.9 ns at 293 K to 657 ns at 40 K. Measurements are also performed on quantum dots on high-Q (> 105) microdisks using cavity-resonant, pulsed excitation.

© 2011 Optical Society of America

OCIS Codes
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(250.5230) Optoelectronics : Photoluminescence
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:
Spectroscopy

History
Original Manuscript: November 30, 2010
Revised Manuscript: January 10, 2011
Manuscript Accepted: January 10, 2011
Published: January 14, 2011

Virtual Issues
Vol. 6, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Matthew T. Rakher, Ranojoy Bose, Chee Wei Wong, and Kartik Srinivasan, "Fiber-based cryogenic and time-resolved spectroscopy of PbS quantum dots," Opt. Express 19, 1786-1793 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-3-1786


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Wise, “Lead salt quantum dots: the limit of strong quantum confinement,” Acc. Chem. Res. 33, 773–780 (2000). [CrossRef] [PubMed]
  2. Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17, 18093–18102 (2009). [CrossRef] [PubMed]
  3. K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume, high-Q photonic crystal microcavity,” Phys. Rev. B 70, 081306R (2004). [CrossRef]
  4. S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006). [CrossRef] [PubMed]
  5. J. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565–582 (2001). [CrossRef]
  6. K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system,” Nature 450, 862–865 (2007). [CrossRef] [PubMed]
  7. M. T. Rakher, N. G. Stoltz, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “Externally mode-matched cavity quantum electrodynamics with charge-tunable quantum dots,” Phys. Rev. Lett. 102, 097403 (2009). [CrossRef] [PubMed]
  8. C. Michael, K. Srinivasan, T. Johnson, O. Painter, K. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength- and material-dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90, 051108 (2007). [CrossRef]
  9. A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82, 1–39 (1997). [CrossRef]
  10. H. Park, A. Fang, S. Kodama, and J. Bowers, “Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum well,” Opt. Express 13, 9460–9464 (2005). [CrossRef] [PubMed]
  11. E. H. Sargent, “Infrared quantum dots,” Adv. Mater. (Weinheim, Ger.) 17, 515–522 (2004). [CrossRef]
  12. J. S. Steckel, S. Coe-Sullivan, V. Bulović, and M. G. Bawendi, “1.3 μm to 1.55 μm Tunable electroluminescence from PbSe quantum dots embedded within an organic device,” Adv. Mater. (Weinheim, Ger.) 15, 1862–1866 (2003). [CrossRef]
  13. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009). [CrossRef]
  14. I. Fushman, D. Englund, and J. Vučković, “Coupling of PbS quantum dots to photonic crystal cavities at room temperature,” Appl. Phys. Lett. 87, 241102 (2005). [CrossRef]
  15. Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, and J. Xu, “Enhanced spontaneous emission at 1.55 mu m from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett. 90, 171105 (2007). [CrossRef]
  16. A. G. Pattantyus-Abraham, H. Qiao, J. Shan, K. A. Abel, T.-S. Wang, F. C. J. M. van Veggel, and J. F. Young, “Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities,” Nano Lett. 9, 2849 (2009). [CrossRef] [PubMed]
  17. R. Bose, J. Gao, J. F. McMillan, A. D. Williams, and C. W. Wong, “Cryogenic spectroscopy of ultra-low density colloidal lead chalcogenide quantum dots on chip-scale optical cavities towards single quantum dot near-infrared cavity QED,” Opt. Express 17, 22474–22483 (2009). [CrossRef]
  18. M. T. Rakher, R. Bose, C. W. Wong, and K. Srinivasan, “Spectroscopy of 1.55 μm PbS quantum dots on Si photonic crystal cavities with a fiber taper waveguide,” Appl. Phys. Lett. 96, 161108 (2010). [CrossRef]
  19. Purchased from Evident Technologies and identified in this paper to foster understanding, without implying recommendation or endorsement by NIST.
  20. F. Le Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005). [CrossRef]
  21. M. Davanço, and K. Srinivasan, “Efficient spectroscopy of single embedded emitters using optical fiber taper waveguides,” Opt. Express 17, 10542–10563 (2009). [CrossRef] [PubMed]
  22. K. Nayak, P. Melentiev, M. Morinaga, F. Kien, V. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15, 5431–5438 (2007). [CrossRef] [PubMed]
  23. M. Gregor, A. Kuhlicke, and O. Benson, “Soft-landing and optical characterization of a preselected single fluorescent particle on a tapered optical fiber,” Opt. Express 17, 24234–24243 (2009). [CrossRef]
  24. E. Vetsch, D. Reitz, G. Sagu’e, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010). [CrossRef] [PubMed]
  25. L. Turyanska, A. Patanè, M. Henini, B. Hennequin, and N. R. Thomas, “Temperature dependence of the photoluminescence emission from thiol-capped PbS quantum dots,” Appl. Phys. Lett. 90, 101913 (2007). [CrossRef]
  26. C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10–20 (1977). [CrossRef]
  27. R. Bose, J. F. McMillan, J. Gao, K. M. Rickey, C. J. Chen, D. V. Talapin, C. B. Murray, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dot solids at 1.5 μm for controllable F¨orster energy transfer,” Nano Lett. 8, 2006–2011 (2008). [CrossRef] [PubMed]
  28. M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010). [CrossRef]
  29. I. Chung, and M. G. Bawendi, “Relationship between single quantum-dot intermittency and fluorescence intensity decays from collections of dots,” Phys. Rev. B 70, 165304 (2004). [CrossRef]
  30. J. M. Pietryga, D. J. Werder, D. J. Williams, J. L. Casson, R. D. Schaller, V. I. Klimov, and J. A. Hollingsworth, “Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission,” J. Am. Chem. Soc. 130, 4879–4885 (2008). [CrossRef] [PubMed]
  31. M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89, 031109 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited