OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 1860–1865

Characterization of nanoscale features in tapered fractal and photonic crystal fibers

C. M. Rollinson, S. T. Huntington, B. C. Gibson, S. Rubanov, and J. Canning  »View Author Affiliations


Optics Express, Vol. 19, Issue 3, pp. 1860-1865 (2011)
http://dx.doi.org/10.1364/OE.19.001860


View Full Text Article

Enhanced HTML    Acrobat PDF (901 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The internal structure of nanostructured air-silica fiber probes have been characterized using a combined focused ion beam and scanning electron microscopy technique. The collapse rate of the air-holes is shown to differ substantially between a regular photonic crystal fiber (PCF) and the quasi-periodic Fractal fiber. The integrity of the Fractal fiber structure is maintained down to an outer diameter as small as 120 nm, whereas the air-holes of the regular PCF begin to collapse when the outer diameter is approximately 820 nm. The observed smallest hole diameter of 10 nm is suggested to be due to physical limits imposed by the molecular structure of silica. These results confirm structural inferences made in previous publications.

© 2011 OSA

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(050.1940) Diffraction and gratings : Diffraction
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2350) Fiber optics and optical communications : Fiber optics imaging
(180.5810) Microscopy : Scanning microscopy
(060.4005) Fiber optics and optical communications : Microstructured fibers
(180.4243) Microscopy : Near-field microscopy
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: October 20, 2010
Revised Manuscript: January 12, 2011
Manuscript Accepted: January 13, 2011
Published: January 18, 2011

Citation
C. M. Rollinson, S. T. Huntington, B. C. Gibson, S. Rubanov, and J. Canning, "Characterization of nanoscale features in tapered fractal and photonic crystal fibers," Opt. Express 19, 1860-1865 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-3-1860


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003). [CrossRef] [PubMed]
  2. P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003). [CrossRef] [PubMed]
  3. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, “Holey optical fibers: an efficient modal model,” J. Lightwave Technol. 17(6), 1093–1102 (1999). [CrossRef]
  4. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000). [CrossRef]
  5. B. C. Gibson, S. T. Huntington, S. Rubanov, P. Olivero, K. Digweed-Lyytikäinen, J. Canning, and J. D. Love, “Exposure and characterization of nano-structured hole arrays in tapered photonic crystal fibers using a combined FIB/SEM technique,” Opt. Express 13(22), 9023–9028 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-22-9023 . [CrossRef] [PubMed]
  6. T. A. Birks, J. C. Knight, and P. S. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997). [CrossRef] [PubMed]
  7. J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, “Adiabatic coupling in tapered air-silica microstructured optical fiber,” IEEE Photon. Technol. Lett. 13(1), 52–54 (2001). [CrossRef]
  8. S. T. Huntington, J. Katsifolis, B. C. Gibson, J. Canning, K. Lyytikainen, J. Zagari, L. W. Cahill, and J. D. Love, “Retaining and characterising nano-structure within tapered air-silica structured optical fibers,” Opt. Express 11(2), 98–104 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-2-98 . [CrossRef] [PubMed]
  9. E. C. Mägi, P. Steinvurzel, and B. J. Eggleton, “Tapered photonic crystal fibers,” Opt. Express 12(5), 776–784 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-5-776 . [CrossRef] [PubMed]
  10. Y. Youk, D. Y. Kim, and K. W. Park, “Guiding properties of a tapered photonic crystal fiber compared with those of a tapered single-mode fiber,” Fiber Int. Opt. 23(6), 439–446 (2004). [CrossRef]
  11. Y. K. Lizé, E. C. Mägi, V. G. Ta’eed, J. A. Bolger, P. Steinvurzel, and B. J. Eggleton, “Microstructured optical fiber photonic wires with subwavelength core diameter,” Opt. Express 12(14), 3209–3217 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-14-3209 . [CrossRef] [PubMed]
  12. H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterisation and applications,” Appl. Phys. B 81(2-3), 377–387 (2005). [CrossRef]
  13. C. Kerbage and B. J. Eggleton, “Tunable microfluidic optical fiber gratings,” Appl. Phys. Lett. 82(9), 1338–1340 (2003). [CrossRef]
  14. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12(13), 2864–2869 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-13-2864 . [CrossRef] [PubMed]
  15. B. H. Lee, J. B. Eom, J. Kim, D. S. Moon, U.-C. Paek, and G.-H. Yang, “Photonic crystal fiber coupler,” Opt. Lett. 27(10), 812–814 (2002). [CrossRef]
  16. T. A. Birks, G. Kakarantzas, P. S. J. Russell, and D. F. Murphy, “Photonic crystal fiber devices,” Proc. SPIE - Int. Soc. Opt. Eng. 4943, 142–151 (2003).
  17. C. Martelli, and J. Canning, “Fresnel Fibers for Sensing,” in Optical Fiber Sensors, (Cancun, Mexico 2006) OSA Technical Digest (CD) (Optical Society of America), 2006; post-deadline paper ThF5.
  18. G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1(2), 115–118 (2007). [CrossRef]
  19. J. Kim and K.-B. Song, “Recent progress of nano-technology with NSOM,” Micron 38(4), 409–426 (2007). [CrossRef]
  20. S. T. Huntington, B. C. Gibson, J. Canning, K. Digweed-Lyytikäinen, J. D. Love, and V. Steblina, “A fractal-based fibre for ultra-high throughput optical probes,” Opt. Express 15(5), 2468–2475 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-5-2468 . [CrossRef] [PubMed]
  21. C. M. Rollinson, S. M. Orbons, S. T. Huntington, B. C. Gibson, J. Canning, J. D. Love, A. Roberts, and D. N. Jamieson, “Metal-free scanning optical microscopy with a fractal fiber probe,” Opt. Express 17(3), 1772–1780 (2009), http://www.opticsexpress.org/abstract.cfm?URI=oe-17-3-1772 . [CrossRef] [PubMed]
  22. C. Martelli, J. Canning, B. C. Gibson, and S. T. Huntington, “Bend loss in structured optical fibres,” Opt. Express 15(26), 17639–17644 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-26-17639 . [CrossRef] [PubMed]
  23. W. J. Wadsworth, A. Witkowska, S. G. Leon-Saval, and T. A. Birks, “Hole inflation and tapering of stock photonic crystal fibres,” Opt. Express 13(17), 6541–6549 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-17-6541 . [CrossRef] [PubMed]
  24. G. A. Valaskovic, M. Holton, and G. H. Morrison, “Parameter control, characterization, and optimization in the fabrication of optical fiber near-field probes,” Appl. Opt. 34(7), 1215–1228 (1995). [CrossRef] [PubMed]
  25. A. C. Wright, “Defect-free vitreous networks: The idealised stricture of SiO2 and related glasses,” in Defects in SiO2 and Related Dielectrics: Science and Technology, G. Pacchioni, L. Skuja, and D. L. Griscom, eds. (Kluwer Academic Publishers, Dordrecht, the Netherlands, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited