OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 1921–1929

Enhancement of chemical sensing capability in a photonic crystal fiber with a hollow high index ring defect at the center

Jiyoung Park, Sejin Lee, Soan Kim, and Kyunghwan Oh  »View Author Affiliations

Optics Express, Vol. 19, Issue 3, pp. 1921-1929 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1433 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new type of index-guided photonic crystal fiber is proposed to enhance chemical sensing capability by introducing a hollow high index ring defect that consists of the central air hole surrounded by a high index GeO2 doped SiO2 glass ring. Optical properties of the fundamental guided mode were numerically analyzed using the full-vector finite element method varying the design parameters of both the defects in the center and the hexagonal air-silica lattice in the cladding. Enhanced evanescent wave interaction in the holey region and lower confinement loss by an order of magnitude were achieved simultaneously, which shows a high potential in hyper sensitive fiber-optic chemical sensing applications.

© 2011 OSA

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:

Original Manuscript: November 30, 2010
Revised Manuscript: January 3, 2011
Manuscript Accepted: January 5, 2011
Published: January 18, 2011

Virtual Issues
Vol. 6, Iss. 2 Virtual Journal for Biomedical Optics

Jiyoung Park, Sejin Lee, Soan Kim, and Kyunghwan Oh, "Enhancement of chemical sensing capability 
in a photonic crystal fiber 
with a hollow high index ring defect at the center," Opt. Express 19, 1921-1929 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003). [CrossRef] [PubMed]
  2. P. St. J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003). [CrossRef] [PubMed]
  3. G. Stewart, W. Jin, and B. Culshaw, “Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared,” Sens. Actuators B Chem. 38(1-3), 42–47 (1997). [CrossRef]
  4. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett. 30(11), 1273–1275 (2005), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-30-11-1273 . [CrossRef] [PubMed]
  5. O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 80(12), 4269–4283 (2008). [CrossRef] [PubMed]
  6. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001). [CrossRef]
  7. T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensen, T. Hansen, and H. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12(17), 4080–4087 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-17-4080 . [CrossRef] [PubMed]
  8. Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt. 42(18), 3509–3515 (2003), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-18-3509 . [CrossRef] [PubMed]
  9. J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15(6), 1120–1128 (2004). [CrossRef]
  10. Z. Zhi-guo, Z. Fang-di, Z. Min, and Y. Pei-da, “Gas sensing properties of index-guided PCF with air-core,” Opt. Laser Technol. 40(1), 167–174 (2008). [CrossRef]
  11. X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Q. Ngo, and Y. C. Kwok, “Evanescent Field Absorption Sensor Using a Pure-Silica Defected-Core Photonic Crystal Fiber,” Photon. Technol. Lett. 20(5), 336–338 (2008). [CrossRef]
  12. K. Oh, S. Choi, Y. Jung, and J. W. Lee, “Novel hollow optical fibers and their applications in photonic devices for optical communications,” J. Lightwave Technol. 23(2), 524–532 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=JLT-23-2-524 . [CrossRef]
  13. S. Kim, Y. Jung, K. Oh, J. Kobelke, K. Schuster, and J. Kirchhof, “Defect and lattice structure for air-silica index-guiding holey fibers,” Opt. Lett. 31(2), 164–166 (2006), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-2-164 . [CrossRef] [PubMed]
  14. S. Kim, U. Paek, and K. Oh, “New defect design in index guiding holey fiber for uniform birefringence and negative flat dispersion over a wide spectral range,” Opt. Express 13(16), 6039–6050 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-16-6039 . [CrossRef] [PubMed]
  15. K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” J. Quantum Electron. 38(7), 927–933 (2002). [CrossRef]
  16. F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6(2), 181–191 (2000). [CrossRef]
  17. P. Viale, S. Fevrier, F. Gerome, and H. Vilard, “Confinement loss computations in photonic crystal fibres using a novel perfectly matched layer design,” in Proceedings of the COMSOL Multiphysics User’s Conference, Paris, 15 Nov. 2005, http://www.comsol.com/papers/1083/
  18. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965), http://www.opticsinfobase.org/abstract.cfm?URI=josa-55-10-1205 . [CrossRef]
  19. J. W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt. 23(24), 4486–4493 (1984), http://www.opticsinfobase.org/abstract.cfm?URI=ao-23-24-4486 . [CrossRef] [PubMed]
  20. T. P. White, R. C. McPhedran, C. M. de Sterke, L. C. Botten, and M. J. Steel, “Confinement losses in microstructured optical fibers,” Opt. Lett. 26(21), 1660–1662 (2001), http://www.opticsinfobase.org/abstract.cfm?URI=ol-26-21-1660 . [CrossRef]
  21. K. Saitoh and M. Koshiba, “Confinement losses in air-guiding photonic bandgap fibers,” Photon. Technol. Lett. 15(2), 236–238 (2003). [CrossRef]
  22. D. Ferrarini, L. Vincetti, M. Zoboli, A. Cucinotta, and S. Selleri, “Leakage properties of photonic crystal fibers,” Opt. Express 10(23), 1314–1319 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-23-1314 . [PubMed]
  23. A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Perturbation Analysis of Dispersion Properties in Photonic Crystal Fibers Through the Finite Element Method,” J. Lightwave Technol. 20(8), 1433–1442 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=JLT-20-8-1433 . [CrossRef]
  24. K. T. V. Grattan, and B. T. Meggitt, Optical Fiber Sensor Technology, Vol. 4 (Kluwer Academic, Dordrecht, The Netherlands, 1999), Chap. 2.
  25. G. Stewart, J. Norris, D. F. Clark, and B. Culshaw, “Evanescent-wave chemical sensors—a theoretical evaluation,” Int. J. Optoelectron. 6, 227–238 (1991).
  26. S. L. Gilbert, and W. C. Swam, “Standard Reference Material: Acetylene 12C2H2 Absorption Reference for 1510 nm to 1540 nm Wavelength Calibration—SRM 2517a,” NIST Spec. Publ. 260–133 (National Institute of Standards and Technology, Gaithersburg, Md., 2001)
  27. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, and J.-P. Champion, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009). [CrossRef]
  28. C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. Brito Cruz, and M. C. J. Large, “Microstructured-core optical fibre for evanescent sensing applications,” Opt. Express 14(26), 13056–13066 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-13056 . [CrossRef] [PubMed]
  29. Z. Xu, K. Duan, Z. Liu, Y. Wang, and W. Zhao, “Numerical analyses of splice losses of photonic crystal fibers,” Opt. Commun. 282(23), 4527–4531 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited