OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 1963–1974

High-order nonlinear Schrödinger equation and weak-light superluminal solitons in active Raman gain media with two control fields

Chengjie Zhu and Guoxiang Huang  »View Author Affiliations

Optics Express, Vol. 19, Issue 3, pp. 1963-1974 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (981 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a scheme to generate superluminal optical solitons in a four-level atomic system with two control fields via an active Raman gain. We derive a modified nonlinear Schrödinger equation with high-order corrections contributed from linear and differential absorption, nonlinear dispersion, and delay response of nonlinear refractive index of the system. We predict various optical solitons in different regimes of system parameters, and show that these optical solitons have superluminal propagating velocity and very low generation power.

© 2011 Optical Society of America

OCIS Codes
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

ToC Category:
Nonlinear Optics

Original Manuscript: July 21, 2010
Revised Manuscript: October 7, 2010
Manuscript Accepted: October 11, 2010
Published: January 19, 2011

Chengjie Zhu and Guoxiang Huang, "High-order nonlinear Schrödinger equation and weak-light superluminal solitons in active Raman gain media with two control fields," Opt. Express 19, 1963-1974 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Hasegawa, and M. Matsumoto, Optical Solitons in Fibers (Springrer, Berlin, 2003).
  2. Y. S. Kivshar, and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, San Diego, 2003).
  3. G. P. Agrawal, Nonlinear Fiber Optics (Elsevier Pte Ltd, Singapore, 2009).
  4. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633 (2005) (and references therein). [CrossRef]
  5. Y. Wu, and L. Deng, “Ultraslow Optical Solitons in a Cold Four-State Medium,” Phys. Rev. Lett. 93, 143904 (2004). [CrossRef] [PubMed]
  6. G. Huang, L. Deng, and M. G. Payne, “Dynamics of ultraslow optical solitons in a cold three-state atomic system,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 016617 (2005). [CrossRef]
  7. C. Hang, and G. Huang, “Weak-light ultraslow vector solitons via electromagnetically induced transparency,” Phys. Rev. A 77, 033830 (2008). [CrossRef]
  8. W.-X. Yang, A.-X. Chen, L.-G. Si, K. Jiang, X. Yang, and R.-K. Lee, “Three coupled ultraslow temporal solitons in a five-level tripod atomic system,” Phys. Rev. A 81, 023814 (2010). [CrossRef]
  9. L. Deng, and M. G. Payne, “Gain-Assisted Large and Rapidly Responding Kerr Effect using a Room-Temperature Active Raman Gain Medium,” Phys. Rev. Lett. 98, 253902 (2007). [CrossRef] [PubMed]
  10. K. J. Jiang, L. Deng, E. W. Hagley, and M. G. Payne, “Superluminal propagation of an optical pulse in a Dopplerbroadened three-state single-channel active Raman gain medium,” Phys. Rev. A 77, 045804 (2008). [CrossRef]
  11. R. Y. Chiao, “Superluminal (but causal) propagation of wave packets in transparent media with inverted atomic populations,” Phys. Rev. A 48, R34 (1993). [CrossRef] [PubMed]
  12. A. M. Steinberg, and R. Y. Chiao, “Dispersionless, highly superluminal propagation in a medium with a gain doublet,” Phys. Rev. A 49, 2071 (1994). [CrossRef] [PubMed]
  13. R. Y. Chiao, and A. M. Steinberg, Progress in optics, edited by E. Wolf (Elsevier, Amsterdam, 1997), p. 345. [CrossRef]
  14. L. J. Wang, A. Kuzmich, and P. Pogariu, “Superluminal solitons in a Lambda-type atomic system with two-folded levels,” Nature 406, 277 (2000). [CrossRef]
  15. A. Dogariu, A. Kuzmich, and L. J. Wang, “Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity,” Phys. Rev. A 63, 053806 (2001). [CrossRef]
  16. A. Kuzmich, A. Dogariu, L. J. Wang, P. W. Milonni, and R. Y. Chiao, “Signal Velocity, Causality, and Quantum Noise in Superluminal Light Pulse Propagation,” Phys. Rev. Lett. 86, 3925 (2001). [CrossRef] [PubMed]
  17. . A. M. Akulshin, A. Cimmino, A. I. Sidorov, P. Hannaford, and G. I. Opat, “Light propagation in an atomic medium with steep and sign-reversible dispersion,” Phys. Rev. A 67, 011801(R) (2003). [CrossRef]
  18. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a roomtemperature solid,” Science 301, 200 (2003). [CrossRef] [PubMed]
  19. M. D. Stenner, D. J. Gauthier, and M. A. Neifield, “The speed of information in a ‘Fast-light’ optical medium,” Nature 425, 695 (2003). [CrossRef]
  20. M. D. Stenner, and D. J. Gauthier, “Pump-beam-instability limits to Raman-gain-doublet ‘Fast-light’ pulse propagation,” Phys. Rev. A 67, 063801 (2003). [CrossRef]
  21. R. G. Ghulghazaryan, and Y. P. Malakyan, “Superluminal optical pulse propagation in nonlinear coherent media,” Phys. Rev. A 67, 063806 (2003). [CrossRef]
  22. K. Kim, H. S. Moon, C. Lee, S. K. Kim, and J. B. Kim, “Observation of arbitrary group velocities of light from superluminal to subluminal on a single atomic transition line,” Phys. Rev. A 68, 013810 (2003). [CrossRef]
  23. L.-G. Wang, N.-H. Liu, Q. Lin, and S.-Y. Zhu, “Superluminal propagation of light pulses: A result of interference,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68, 066606 (2003). [CrossRef]
  24. E. E. Mikhailov, V. A. Sautenkov, I. Novikova, and G. R. Welch, “Large negative and positive delay of optical pulses in coherently prepared dense Rb vapor with buffer gas,” Phys. Rev. A 69, 063808 (2004). [CrossRef]
  25. G. S. Agarwal, and S. Dasgupta, “Superluminal propagation via coherent manipulation of the Raman gain process,” Phys. Rev. A 70, 023802 (2004). [CrossRef]
  26. A. Lezama, A. M. Akulshin, A. I. Sidorov, and P. Hannaford, “Storage and retrieval of light pulses in atomic media with ‘slow’ and ‘fast’ light,” Phys. Rev. A 73, 033806 (2006). [CrossRef]
  27. M. Janowicz, and J. Mostowski, “Superluminal propagation of solitary kinklike waves in amplifying media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73, 046613 (2006). [CrossRef]
  28. J. Zhang, G. Hernandez, and Y. Zhu, “Copropagating superluminal and slow light manifested by electromagnetically assisted nonlinear optical processes,” Opt. Lett. 31, 2598 (2006). [CrossRef] [PubMed]
  29. K. J. Jiang, L. Deng, and M. G. Payne, “Superluminal propagation of an optical pulse in a Doppler-broadened three-state single-channel active Raman gain medium,” Phys. Rev. A 76, 033819 (2007). [CrossRef]
  30. G. S. Agarwal, and S. Dasgupta, “Superluminal propagation via coherent manipulation of the Raman gain process,” Phys. Rev. A 70, 023802 (2004). [CrossRef]
  31. C. Zhu, and G. Huang, “Gain-Assisted Giant Kerr Nonlinearity in a Λ-type System with Two-folded Lower Levels,” Eur. Phys. J. D 56, 231 (2010). [CrossRef]
  32. A. Jeffery, and T. Kawahawa, Asymptotic Method in Nonlinear Wave Theory (Pitman, London, 1982).
  33. S. Aranson, and L. Kramer, “The world of the complex Ginzburg-Landau equation,” Rev. Mod. Phys. 74, 99 (2002) (and references therein). [CrossRef]
  34. M. Gedalin, T. C. Scott, and Y. B. Band, “Optical Solitary Waves in the Higher Order Nonlinear Schr¨odinger Equation,” Phys. Rev. Lett. 78, 448 (1997). [CrossRef]
  35. K. Nakkeeran, K. Porsezian, P. Shanmugha Sundaram, and A. Mahalingam, “Optical Solitons in N-Coupled Higher Order Nonlinear Schr¨odinger Equations,” Phys. Rev. Lett. 80, 1425 (1998). [CrossRef]
  36. S. L. Palacios, A. Guinea, J. M. Fernndez-Dłaz, and R. D. Crespo, “Dark solitary waves in the nonlinear Schrödinger equation with third order dispersion, self-steepening, and self-frequency shift,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 60, R45 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited