OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 1975–1984

Deconvolution from wave front sensing using the frozen flow hypothesis

Stuart M. Jefferies and Michael Hart  »View Author Affiliations

Optics Express, Vol. 19, Issue 3, pp. 1975-1984 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1171 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Deconvolution from wave front sensing (DWFS) is an image-reconstruction technique for compensating the image degradation due to atmospheric turbulence. DWFS requires the simultaneous recording of high cadence short-exposure images and wave-front sensor (WFS) data. A deconvolution algorithm is then used to estimate both the target object and the wave front phases from the images, subject to constraints imposed by the WFS data and a model of the optical system. Here we show that by capturing the inherent temporal correlations present in the consecutive wave fronts, using the frozen flow hypothesis (FFH) during the modeling, high-quality object estimates may be recovered in much worse conditions than when the correlations are ignored.

© 2011 OSA

OCIS Codes
(100.0100) Image processing : Image processing
(100.3020) Image processing : Image reconstruction-restoration
(100.1455) Image processing : Blind deconvolution

ToC Category:
Image Processing

Original Manuscript: August 31, 2010
Revised Manuscript: December 29, 2010
Manuscript Accepted: January 4, 2011
Published: January 19, 2011

Stuart M. Jefferies and Michael Hart, "Deconvolution from wave front sensing using the frozen flow hypothesis," Opt. Express 19, 1975-1984 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. A. Poyneer, M. van Dam, and J.-P. Véran, “Experimental verification of the frozen flow atmospheric turbulence assumption with use of astronomical adaptive optics telemetry,” J. Opt. Soc. Am. A 26(4), 833–846 (2009). [CrossRef]
  2. E. Gendron and P. Léna, “Single layer atmospheric turbulence demonstrated by adaptive optics observations,” Astrophys. Space Sci. 239(2), 221–228 (1996). [CrossRef]
  3. M. Schöck and E. J. Spillar, “Method for a quantitative investigation of the frozen flow hypothesis,” J. Opt. Soc. Am. A 17(9), 1650–1658 (2000). [CrossRef]
  4. D. L. Fried, “Time-delay-induced mean-square error in adaptive optics,” J. Opt. Soc. Am. A 7(7), 1224–1225 (1990). [CrossRef]
  5. D. F. Buscher, J. T. Armstrong, C. A. Hummel, A. Quirrenbach, D. Mozurkewich, K. J. Johnston, C. S. Denison, M. M. Colavita, and M. Shao, “Interferometric seeing measurements on Mt. Wilson: power spectra and outer scales,” Appl. Opt. 34(6), 1081–1096 (1995). [CrossRef] [PubMed]
  6. J. W. Hardy, “Adaptive optics for astronomical telescopes,” Oxford Series in Optical and Imaging Science, Oxford University Press, §9.4.3 (1998)
  7. K. A. Page, “Exploiting the frozen flow hypothesis for linear predictions in adaptive optics,” presented in Session 145 on Astronomical Instruments and Analytical Tools at the AAS 199th meeting, Washington DC, Jan 10, 2002.
  8. L. A. Poyneer, B. A. Macintosh, and J.-P. Véran, “Fourier transform wavefront control with adaptive prediction of the atmosphere,” J. Opt. Soc. Am. A 24(9), 2645–2660 (2007). [CrossRef]
  9. J. Primot, G. Rousset, and J. C. Fontanella, “Deconvolution from wave front sensing: a new technique for compensating turbulence-degraded images,” J. Opt. Soc. Am. A 7(9), 1598–1608 (1990). [CrossRef]
  10. B. M. Welsh and M. C. Roggemann, “Signal-to-noise comparison of deconvolution from wave-front sensing with traditional linear and speckle image reconstruction,” Appl. Opt. 34(12), 2111–2119 (1995). [CrossRef] [PubMed]
  11. L. M. Mugnier, C. Robert, J.-M. Conan, V. Michau, and S. Salem, “Myopic deconvolution from wave front sensing,” J. Opt. Soc. Am. A 18(4), 862–872 (2001). [CrossRef]
  12. S. M. Jefferies, M. Lloyd-Hart, E. K. Hege, and J. Georges, “Sensing wave-front amplitude and phase with phase diversity,” Appl. Opt. 41(11), 2095–2102 (2002). [CrossRef] [PubMed]
  13. R. H. T. Bates, and M. J. McDonnell, Image Restoration and Reconstruction, Chapter 3, Oxford University Press, p 77 (1986)
  14. L. C. Roberts and C. R. Neyman, “Characterization of the AEOS adaptive optics system,” Publ. Astron. Soc. Pac. 114(801), 1260–1266 (2002). [CrossRef]
  15. F. Roddier, M. Northcott, and J. E. Graves, “A simple low-order adaptive optics system for near-infrared applications,” Publ. Astron. Soc. Pac. 103, 131–149 (1991). [CrossRef]
  16. N. M. Milton, M. Lloyd-Hart, J. Bernier, and C. Baranec, “Real-time atmospheric turbulence profile estimation using modal covariance measurements from multiple guide stars,” in Astronomical Adaptive Optics Systems and Applications III (Proc. SPIE) eds. Tyson, R. K. & Lloyd-Hart, M., 6691, 66910B (2007).
  17. S. G. Els, M. Schöck, J. Seguel, A. Tokovinin, V. Kornilov, R. Riddle, W. Skidmore, T. Travouillon, K. Vogiatzis, R. Blum, E. Bustos, B. Gregory, J. Vasquez, D. Walker, and P. Gillett, “Study on the precision of the multiaperture scintillation sensor turbulence profiler (MASS) employed in the site testing campaign for the Thirty Meter Telescope,” Appl. Opt. 47(14), 2610–2618 (2008). [CrossRef] [PubMed]
  18. S. E. Egner, E. Masciadri, and D. McKenna, “Generalized SCIDAR measurements at Mount Graham,” Publ. Astron. Soc. Pac. 119(856), 669–686 (2007). [CrossRef]
  19. T. Rimmele, “Haleakala turbulence and wind profiles used for adaptive optics performance modeling,” ATST Project Document RPT-0300 (1996).
  20. S. R. Maethner, Deconvolution from wave-front sensing using optimal wave-front estimators, Thesis, Air Force Institute of Technology, AFIT/GSO/ENP/96D–01, p 42–43 (1996)
  21. R. B. Makidon, A. Sivaramakrishnan, M. D. Perrin, L. C. Roberts, B. R. Oppenheimer, R. Soummer, and J. R. Graham, “An Analysis of Fundamental Waffle Mode in Early AEOS Adaptive Optics Images,” Publ. Astron. Soc. Pac. 117(834), 831–846 (2005). [CrossRef]
  22. D. A. Hope, and S. M. Jefferies, “A Fourier-based constraint for blind restoration of imagery obtained through strong turbulence”, Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, held in Wailea, Maui, Hawaii, September 10–14, 2006, Ed.: S. Ryan, The Maui Economic Development Board, p. E26 (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited