OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 1991–1996

Fabrication of low loss dispersion engineered chalcogenide photonic crystals

Marcel Spurny, Liam O’Faolain, Douglas A. P. Bulla, Barry Luther-Davies, and Thomas F. Krauss  »View Author Affiliations

Optics Express, Vol. 19, Issue 3, pp. 1991-1996 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1199 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate low loss photonic crystal waveguides in chalcogenide (Ge33As12Se55) glasses. The measured losses are as low as 21dB/cm. We experimentally determine the refractive index of the thin film chalcogenide glass to be n = 2.6 and demonstrate that dispersion engineering can be performed up to a group index of ng = 40 in this relatively low refractive index contrast system.

© 2011 OSA

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(220.4000) Optical design and fabrication : Microstructure fabrication
(130.5296) Integrated optics : Photonic crystal waveguides
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: December 3, 2010
Revised Manuscript: January 13, 2011
Manuscript Accepted: January 13, 2011
Published: January 19, 2011

Marcel Spurny, Liam O’Faolain, Douglas A. P. Bulla, Barry Luther-Davies, and Thomas F. Krauss, "Fabrication of low loss dispersion engineered chalcogenide photonic crystals," Opt. Express 19, 1991-1996 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. K. Liang, and H. K. Tsang, “Optical Limiting and Raman Amplification in Silicon Waveguides”, in Optical Fiber Communication Conference and Exposition and The National Fiber Optics Engineers Conference, Technical Digest (CD) (Optical Society of America, 2005), paper JWA15.
  2. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003). [CrossRef]
  3. V. Mizrahi, K. W. Delong, G. I. Stegeman, M. A. Saifi, and M. J. Andrejco, “Two-photon absorption as a limitation to all-optical switching,” Opt. Lett. 14(20), 1140–1142 (1989). [CrossRef] [PubMed]
  4. D. Lezal, J. Pedlikova, and J. Zavadil, “Chalcogenide Glasses for optical and photonics applications,” Chalcogenide Lett. 1, 11–15 (2004).
  5. K. A. Cerqua-Richardson, J. M. McKinley, B. Lawrence, S. Joshi, and A. Villeneuve, “Comparison of nonlinear optical properties of sulfide glasses in bulk and thin film form,” Opt. Mater. 10(2), 155–159 (1998). [CrossRef]
  6. Y. Ruan, M. Kim, Y. Lee, B. Luther-Davies, and A. Rode, “Fabrication of high-Q chalcogenide photonic crystal resonators by e-beam lithography,” Appl. Phys. Lett. 90(7), 071102 (2007). [CrossRef]
  7. K. Suzuki, Y. Hamachi, and T. Baba, “Fabrication and characterization of chalcogenide glass photonic crystal waveguides,” Opt. Express 17(25), 22393–22400 (2009). [CrossRef]
  8. S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12(10), 104004 (2010). [CrossRef]
  9. M. Bass, ed., Handbook of Optics II, 2nd ed. (McGraw-Hill, 1994).
  10. T. P. White, L. O’Faolain, J. Li, L. C. Andreani, and T. F. Krauss, “Silica-embedded silicon photonic crystal waveguides,” Opt. Express 16(21), 17076–17081 (2008). [CrossRef] [PubMed]
  11. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16(9), 6227–6232 (2008). [CrossRef] [PubMed]
  12. A. Gomez-Iglesias, D. O’Brien, L. O’Faolain, A. Miller, and T. F. Krauss, “Direct measurement of the group index of photonic crystal waveguides via Fourier transform spectral interferometry,” Appl. Phys. Lett. 90(26), 261107 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited