OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 2014–2028

Highly anisotropic effective dielectric functions of silver nanoparticle arrays

Thomas W. H. Oates, Mukesh Ranjan, Stefan Facsko, and Hans Arwin  »View Author Affiliations

Optics Express, Vol. 19, Issue 3, pp. 2014-2028 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1686 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Variable-angle and Mueller matrix spectroscopic ellipsometry are used to determine the effective dielectric tensors of random and aligned silver nanoparticles and nanorods thin films. Randomly arranged particles are uniaxially anisotropic while aligned particles are biaxially anisotropic, with the anisotropy predominantly at the plasmonic resonances. The strong resonances in nanorod arrays result in the real part of the effective in-plane permittivities being opposite in sign over a significant range in the visible, suggesting the potential to design materials that display tunable negative-refraction. A structural tilt in the particle arrays results in monoclinic dielectric properties.

© 2011 OSA

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(260.2130) Physical optics : Ellipsometry and polarimetry
(160.3918) Materials : Metamaterials
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: November 1, 2010
Revised Manuscript: November 23, 2010
Manuscript Accepted: November 23, 2010
Published: January 19, 2011

Thomas W. H. Oates, Mukesh Ranjan, Stefan Facsko, and Hans Arwin, "Highly anisotropic effective dielectric functions of silver nanoparticle arrays," Opt. Express 19, 2014-2028 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930–930 (2008). [CrossRef] [PubMed]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001). [CrossRef] [PubMed]
  3. G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Lett. 30(23), 3198–3200 (2005). [CrossRef] [PubMed]
  4. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65(20), 4 (2002). [CrossRef]
  5. M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62(16), 10696–10705 (2000). [CrossRef]
  6. Y. M. Liu, G. Bartal, and X. Zhang, “All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region,” Opt. Express 16(20), 15439–15448 (2008). [CrossRef] [PubMed]
  7. V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes and negative refraction in metal nanowire composites,” Opt. Express 11(7), 735–745 (2003). [CrossRef] [PubMed]
  8. I. Romero and F. J. García de Abajo, “Anisotropy and particle-size effects in nanostructured plasmonic metamaterials,” Opt. Express 17(24), 22012–22022 (2009). [CrossRef] [PubMed]
  9. A. Keller, R. Cuerno, S. Facsko, and W. Moller, “Anisotropic scaling of ripple morphologies on high-fluence sputtered silicon,” Phys. Rev. B 79(11), 7 (2009). [CrossRef]
  10. T. W. H. Oates, A. Keller, S. Facsko, and A. Mucklich, “Aligned silver nanoparticles on rippled silicon templates exhibiting anisotropic plasmon absorption,” Plasmonics 2(2), 47–50 (2007). [CrossRef]
  11. T. W. H. Oates, A. Keller, S. Noda, and S. Facsko, “Self-organized metallic nanoparticle and nanowire arrays from ion-sputtered silicon templates,” Appl. Phys. Lett. 93(6), 3 (2008). [CrossRef]
  12. M. Ranjan, T. W. H. Oates, S. Facsko, and W. Möller, “Optical properties of silver nanowire arrays with 35 nm periodicity,” Opt. Lett. 35(15), 2576–2578 (2010). [CrossRef] [PubMed]
  13. R. W. Collins and J. Koh, “Dual rotating-compensator multichannel ellipsometer: instrument design for real-time Mueller matrix spectroscopy of surfaces and films,” J. Opt. Soc. Am. A 16(8), 1997–2006 (1999). [CrossRef]
  14. R. M. A. Azzam and N. M. Bashara, “Generalized Ellipsometry for Surfaces with Directional Preference - Application to Diffraction Gratings,” J. Opt. Soc. Am. 62(12), 1375–1375 (1972). [CrossRef]
  15. R. M. A. Azzam, and N. M. Bashara, Ellipsometry and Polarized Light (Elsevier, 1987).
  16. H. Wormeester, E. S. Kooij, and B. Poelsema, “Effective dielectric response of nanostructured layers,” Phys. Status Solidi A-Appl, Mat. 205, 756–763 (2008). [CrossRef]
  17. G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69(3), 371–373 (1996). [CrossRef]
  18. D. W. Lynch, and W. R. Hunter, in Handbook of Optical Constants of Solids, ed. Palik, E. D. (Academic Press, 1985).
  19. S. Yamaguchi, “Optical Absorption of Heat Treated Very Thin Silver Films and Its Dependence on Angle of Incidence,” J. Phys. Soc. Jpn. 17(7), 1172–1180 (1962). [CrossRef]
  20. T. Yamaguchi, S. Yoshida, and A. Kinbara, “Effect of Dipole Interaction between Island Particles on Optical Properties of an Aggregated Silver Film,” Thin Solid Films 13(2), 261–264 (1972). [CrossRef]
  21. T. Yamaguchi, S. Yoshida, and A. Kinbara, “Optical Effect of Substrate on Anomalous Absorption of Aggregated Silver Films,” Thin Solid Films 21(1), 173–187 (1974). [CrossRef]
  22. D. Bedeaux, and J. Vlieger, Optical properties of Surfaces (Imperial College Press, 2001).
  23. L. A. A. Pettersson, F. Carlsson, O. Inganäs, and H. Arwin, “Spectroscopic ellipsometry studies of the optical properties of doped poly(3,4-ethylenedioxythiophene): an anisotropic metal,” Thin Solid Films 313–314(1-2), 356–361 (1998). [CrossRef]
  24. T. W. H. Oates, H. Sugime, and S. Noda, “Combinatorial Surface-Enhanced Raman Spectroscopy and Spectroscopic Ellipsometry of Silver Island Films,” J. Phys. Chem. C 113(12), 4820–4828 (2009). [CrossRef]
  25. R. Lazzari, S. Roux, I. Simonsen, J. Jupille, D. Bedeaux, and J. Vlieger, “Multipolar plasmon resonances in supported silver particles: The case of Ag/alpha-Al2O3(0001),” Phys. Rev. B 65(23), 235424 (2002). [CrossRef]
  26. R. A. Ferrell, “Predicted Radiation of Plasma Oscillations in Metal Films,” Phys. Rev. 111(5), 1214–1222 (1958). [CrossRef]
  27. D. W. Berreman, “Infrared Absorption at Longitudinal Optic Frequency in Cubic Crystal Films,” Phys. Rev. 130(6), 2193–2198 (1963). [CrossRef]
  28. C. Kittel, Introduction to solid state physics (John Wiley & Sons, 1996).
  29. T. W. H. Oates and A. Mucklich, “Evolution of plasmon resonances during plasma deposition of silver nanoparticles,” Nanotechnology 16(11), 2606–2611 (2005). [CrossRef]
  30. R. M. A. Azzam and N. M. Bashara, “Application of Generalized Ellipsometry to Anisotropic Crystals,” J. Opt. Soc. Am. 64(2), 128–133 (1974). [CrossRef]
  31. D. E. Aspnes, “Expanding horizons: new developments in ellipsometry and polarimetry,” Thin Solid Films 455, 3–13 (2004). [CrossRef]
  32. R. Ossikovski, M. Anastasiadou, S. Ben Hatit, E. Garcia-Caurel, and A. De Martino, “Depolarizing Mueller matrices: how to decompose them?” Phys. Status Solidi A-Appl, Mat. 205, 720–727 (2008). [CrossRef]
  33. R. M. A. Azzam, “Propagation of Partially Polarized-Light through Anisotropic Media with or without Depolarization - Differential 4x4 Matrix Calculus,” J. Opt. Soc. Am. 68(12), 1756–1767 (1978). [CrossRef]
  34. D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003). [CrossRef] [PubMed]
  35. M. Dressel, B. Gompf, D. Faltermeier, A. K. Tripathi, J. Pflaum, and M. Schubert, “Kramers-Kronig-consistent optical functions of anisotropic crystals: generalized spectroscopic ellipsometry on pentacene,” Opt. Express 16(24), 19770–19778 (2008). [CrossRef] [PubMed]
  36. D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Generalized ellipsometry for monoclinic absorbing materials: determination of optical constants of Cr columnar thin films,” Opt. Lett. 34(7), 992–994 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited