OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 2064–2078

Harmonic generation in metallic, GaAs-filled nanocavities in the enhanced transmission regime at visible and UV wavelengths

M. A. Vincenti, D. de Ceglia, V. Roppo, and M. Scalora  »View Author Affiliations


Optics Express, Vol. 19, Issue 3, pp. 2064-2078 (2011)
http://dx.doi.org/10.1364/OE.19.002064


View Full Text Article

Enhanced HTML    Acrobat PDF (1497 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have conducted a theoretical study of harmonic generation from a silver grating having slits filled with GaAs. By working in the enhanced transmission regime, and by exploiting phase-locking between the pump and its harmonics, we guarantee strong field localization and enhanced harmonic generation under conditions of high absorption at visible and UV wavelengths. Silver is treated using the hydrodynamic model, which includes Coulomb and Lorentz forces, convection, electron gas pressure, plus bulk χ(3) contributions. For GaAs we use nonlinear Lorentz oscillators, with characteristic χ(2) and χ(3) and nonlinear sources that arise from symmetry breaking and Lorentz forces. We find that: (i) electron pressure in the metal contributes to linear and nonlinear processes by shifting/reshaping the band structure; (ii) TE- and TM-polarized harmonics can be generated efficiently; (iii) the χ(2) tensor of GaAs couples TE- and TM-polarized harmonics that create phase-locked pump photons having polarization orthogonal compared to incident pump photons; (iv) Fabry-Perot resonances yield more efficient harmonic generation compared to plasmonic transmission peaks, where most of the light propagates along external metal surfaces with little penetration inside its volume. We predict conversion efficiencies that range from 10−6 for second harmonic generation to 10−3 for the third harmonic signal, when pump power is 2GW/cm2.

© 2011 OSA

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4350) Nonlinear optics : Nonlinear optics at surfaces
(240.6680) Optics at surfaces : Surface plasmons
(240.3695) Optics at surfaces : Linear and nonlinear light scattering from surfaces
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Nonlinear Optics

History
Original Manuscript: December 2, 2010
Manuscript Accepted: January 10, 2011
Published: January 19, 2011

Citation
M. A. Vincenti, D. de Ceglia, V. Roppo, and M. Scalora, "Harmonic generation in metallic, GaAs-filled nanocavities in the enhanced transmission regime at visible and UV wavelengths," Opt. Express 19, 2064-2078 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-3-2064


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  2. L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film, ” Phys. Rev. Lett. 86(6), 1110–1113 (2001). [CrossRef] [PubMed]
  3. Y. Liu and S. Blair, “Fluorescence enhancement from an array of subwavelength metal apertures,” Opt. Lett. 28(7), 507–509 (2003). [CrossRef] [PubMed]
  4. D. J. Park, S. B. Choi, Y. H. Ahn, F. Rotermund, I. B. Sohn, C. Kang, M. S. Jeong, and D. S. Kim, “Terahertz near-field enhancement in narrow rectangular apertures on metal film,” Opt. Express 17(15), 12493–12501 (2009). [CrossRef] [PubMed]
  5. A. Nahata, R. A. Linke, T. Ishi, and K. Ohashi, “Enhanced nonlinear optical conversion from a periodically nanostructured metal film,” Opt. Lett. 28(6), 423–425 (2003). [CrossRef] [PubMed]
  6. M. Airola, Y. Liu, and S. Blair, “Second-harmonic generation from an array of sub-wavelength metal apertures,” J. Opt. A, Pure Appl. Opt. 7(2), S118–S123 (2005). [CrossRef]
  7. A. Lesuffler, L. K. S Kumar, and R. Gordon, “Enhanced second harmonic generation from Nanoscale double-hole arrays in gold film,” Appl. Phys. Lett. 88(26), 261104 (2006). [CrossRef]
  8. J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97(14), 146102 (2006). [CrossRef] [PubMed]
  9. N. Rakov, F. E. Ramos, and M. Xiao, “Strong second-harmonic radiation from a thin silver film with randomly distributed small holes,” J. Phys. Condens. Matter 15(23), L349–L352 (2003). [CrossRef]
  10. T. Xu, X. Jiao, and S. Blair, “Third-harmonic generation from arrays of sub-wavelength metal apertures,” Opt. Express 17(26), 23582–23588 (2009). [CrossRef]
  11. N. N. Lepeshkin, A. Schweinsberg, G. Piredda, R. S. Bennink, and R. W. Boyd, “Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals,” Phys. Rev. Lett. 93(12), 123902 (2004). [CrossRef] [PubMed]
  12. D. T. Owens, C. Fuentes-Hernandez, J. M. Hales, J. W. Perry, and B. Kippelen, “A comprehensive analysis of the contributions to the nonlinear optical properties of thin Ag films,” J. Appl. Phys. 107(12), 123114 (2010). [CrossRef]
  13. D. Krause, C. W. Teplin, and C. T. Rogers, “Optical surface second harmonic measurements of isotropic thin-film metals: Gold, silver, copper, aluminum, and tantalum,” J. Appl. Phys. 96(7), 3626 (2004). [CrossRef]
  14. F. Xiang Wang, F. J. Rodríguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B 80(23), 233402 (2009). [CrossRef]
  15. Y. R. Shen, The Principles of Nonlinear Optics, (Wiley Classics Library, Wiley, New York, 2002).
  16. D. Maystre, M. Neviere, and R. Reinisch, “Nonlinear polarization inside metals: a mathematical study of the free electron model,” Appl. Phys., A Mater. Sci. Process. 39(2), 115–121 (1986). [CrossRef]
  17. M. A. Vincenti, V. Petruzzelli, A. D'Orazio, F. Prudenzano, M. J. Bloemer, N. Aközbek, and M. Scalora, “Second harmonic generation from nanoslits in metal substrates: applications to palladium-based H2 sensor,” J. Nanophotonics 2(1), 021851 (2008). [CrossRef]
  18. F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209(1-3), 17–22 (2002). [CrossRef]
  19. F. I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79(1), 1–8 (2004). [CrossRef]
  20. W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second Harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6(5), 1027–1030 (2006). [CrossRef]
  21. E. H. Barakat, M. P. Bernal, and F. I. Baida, “Second harmonic generation enhancement by use of annular aperture arrays embedded into silver and filled by lithium niobate,” Opt. Express 18(7), 6530–6536 (2010). [CrossRef] [PubMed]
  22. W. Fan, S. Zhang, K. J. S. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, “Second harmonic generation from patterned GaAs inside a subwavelength metallic hole array,” Opt. Express 14(21), 9570–9575 (2006). [CrossRef] [PubMed]
  23. N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical harmonic generation in reflection from media with inversion symmetry,” Phys. Rev. 174(3), 813–822 (1968). [CrossRef]
  24. J. E. Sipe, V. C. Y. So, M. Fukui, and G. I. Stegeman, “Analysis of second-harmonic generation at metal surfaces,” Phys. Rev. B 21(10), 4389–4402 (1980). [CrossRef]
  25. J. E. Sipe, and G. I. Stegeman, Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces, V. M. Agranovich and D. Mills, eds., (North-Holland, Amsterdam, 1982).
  26. M. Corvi and W. L. Schaich, “Hydrodynamics model calculation of second harmonic generation at a metal surface,” Phys. Rev. B 33(6), 3688–3695 (1986). [CrossRef]
  27. A. Eguiluz and J. J. Quinn, “Hydrodynamic model for surface plasmon in metals and degenerate semiconductors,” Phys. Rev. B 14(4), 1347–1361 (1976). [CrossRef]
  28. M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second and Third Harmonic Generation in Metal-Based Structures,” Phys. Rev. A 82(4), 043828 (2010). [CrossRef]
  29. N. Bloembergen and P. S. Pershan, “Light Waves at the Boundary of Nonlinear Media,” Phys. Rev. 128(2), 606–622 (1962). [CrossRef]
  30. W. Glenn, “Second-harmonic generation by picosecond optical pulses,” IEEE J. Quantum Electron. 5(6), 284–290 (1969). [CrossRef]
  31. J. T. Manassah and O. R. Cockings, “Induced phase modulation of a generated second-harmonic signal,” Opt. Lett. 12(12), 1005–1007 (1987). [CrossRef] [PubMed]
  32. S. L. Shapiro, “Second harmonic generation in LiNbO3 by picosecond pulses,” Appl. Phys. Lett. 13(1), 19 (1968). [CrossRef]
  33. L. D. Noordam, H. J. Bakker, M. P. de Boer, and H. B. van Linden van den Heuvell, “Second-harmonic generation of femtosecond pulses: observation of phase-mismatch effects,” Opt. Lett. 15(24), 1464 (1990). [CrossRef] [PubMed]
  34. N. C. Kothari and X. Carlotti, “Transient second-harmonic generation: influence of effective group-velocity dispersion,” J. Opt. Soc. Am. B 5(4), 756 (1988). [CrossRef]
  35. V. Roppo, M. Centini, C. Sibilia, M. Bertolotti, D. de Ceglia, M. Scalora, N. Akozbek, M. J. Bloemer, J. W. Haus, O. G. Kosareva, and V. P. Kandidov, “Role of phase matching in pulsed second-harmonic generation: Walk-off and phase-locked twin pulses in negative-index media,” Phys. Rev. A 76(3), 033829 (2007). [CrossRef]
  36. V. Roppo, M. Centini, D. de Ceglia, M. A. Vincenti, J. W. Haus, N. Akozbek, M. J. Bloemer, and M. Scalora, “Anomalous momentum states, non-specular reflections, and negative refraction of phase-locked, second-harmonic pulses,” Metamaterials (Amst.) 2(2-3), 135–144 (2008). [CrossRef]
  37. M. Centini, V. Roppo, E. Fazio, F. Pettazzi, C. Sibilia, J. W. Haus, J. V. Foreman, N. Akozbek, M. J. Bloemer, and M. Scalora, “Inhibition of linear absorption in opaque materials using phase-locked harmonic generation,” Phys. Rev. Lett. 101(11), 113905 (2008). [CrossRef] [PubMed]
  38. V. Roppo, C. Cojocaru, F. Raineri, G. D’Aguanno, J. Trull, Y. Halioua, R. Raj, I. Sagnes, R. Vilaseca, and M. Scalora, “Field localization and enhancement of phase-locked second- and third-order harmonic generation in absorbing semiconductor cavities,” Phys. Rev. A 80(4), 043834 (2009). [CrossRef]
  39. V. Roppo, J. Foreman, N. Akozbek, M. A. Vincenti, and M. Scalora, “Third Harmonic Generation at 223nm in the Metallic Regime of GaP,” http://arxiv.org/abs/1011.0627 (2010).
  40. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, London-New York (1985).
  41. M. A. Vincenti, M. De Sario, V. Petruzzelli, A. D’Orazio, F. Prudenzano, D. de Ceglia, N. Akozbek, M. J. Bloemer, P. Ashley, and M. Scalora, “Enhanced transmission and second harmonic generation from subwavelength slits on metal substrates,” Proc. SPIE 6987, 69870O, 69870O-9 (2008). [CrossRef]
  42. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999). [CrossRef]
  43. Q. Cao and Ph. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002). [CrossRef] [PubMed]
  44. P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier, and P. Chavel, “Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures,” Phys. Rev. B 68(12), 125404 (2003). [CrossRef]
  45. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Transmission of light through a periodic array of slits in a thick metallic film,” Opt. Express 13(12), 4485–4491 (2005). [CrossRef] [PubMed]
  46. D. Pacifici, H. J. Lezec, H. A. Atwater, and J. Weiner, “Quantitative Determination of Optical Transmission through Subwavelength Slit Arrays in Ag films: The Essential role of Surface Wave Interference and Local Coupling between Adjacent Slits,” Phys. Rev. B 77(11), 115411 (2008). [CrossRef]
  47. R. W. Boyd, Nonlinear Optics, (Academic Press, New York, 2003)
  48. V. Roppo, F. Raineri, C. Cojocaru, R. Raj, J. Trull, I. Sagnes, R. Vilaseca, and M. Scalora, “Generation efficiency of the Second Harmonic Inhomogeneous Component,” arXiv:1010.4693v1, (2010).
  49. R. S. Bennink, Y. K. Yoon, R. W. Boyd, and J. E. Sipe, “Accessing the optical nonlinearity of metals with metal- dielectric photonic bandgap structures,” Opt. Lett. 24(20), 1416–1418 (1999). [CrossRef]
  50. J. Olivares, J. Requejo-Isidro, R. del Coso, R. de Nalda, J. Solis, C. N. Afonso, A. L. Stepanov, D. Hole, P. D. Townsend, and A. Naudon, “Large enhancement of the third-order optical susceptibility in Cu-silica composites produced by low-energy high-current ion implantation,” J. Appl. Phys. 90(2), 1064 (2001). [CrossRef]
  51. J. M. Ballesteros, R. Serna, J Soli's, C. N Afonso, A. K Petford-Long, D. H Osborne, and R. F Haglund, “Pulsed laser deposition of Cu:Al2O3 nanocrystal thin films with high third-order optical susceptibility,” Appl. Phys. Lett. 71, 2445 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (364 KB)     
» Media 2: MOV (171 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited