OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 2079–2084

Optoelectronic detection of millimetre-wave signals with travelling-wave uni-travelling carrier photodiodes

Efthymios Rouvalis, Martyn J. Fice, Cyril C. Renaud, and Alwyn J. Seeds  »View Author Affiliations

Optics Express, Vol. 19, Issue 3, pp. 2079-2084 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (912 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optically pumped mixing in travelling-wave uni-travelling carrier photodiodes is proposed as a novel technique for detecting millimetre-wave signals. An experimental demonstration was performed at a frequency of 100 GHz. From DC measurements, an increase in the responsivity was found at high levels of optical power. The mixing mechanism is attributed to the variation of the responsivity with the applied reverse bias and the optical input power. The maximum intermediate frequency power was found to be −35 dBm for a 4 dBm radio frequency power, while an average conversion loss of 40 dB was achieved. A wide dynamic range of more than 42 dB was measured, limited by the maximum available millimetre-wave power.

© 2011 OSA

OCIS Codes
(040.0040) Detectors : Detectors
(040.2840) Detectors : Heterodyne
(040.5160) Detectors : Photodetectors
(250.0250) Optoelectronics : Optoelectronics

ToC Category:

Original Manuscript: December 2, 2010
Revised Manuscript: January 13, 2011
Manuscript Accepted: January 13, 2011
Published: January 19, 2011

Efthymios Rouvalis, Martyn J. Fice, Cyril C. Renaud, and Alwyn J. Seeds, "Optoelectronic detection of millimetre-wave signals with travelling-wave uni-travelling carrier photodiodes," Opt. Express 19, 2079-2084 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. H. Siegel, “Terahertz Technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002). [CrossRef]
  2. M. Tonouchi, “Cutting edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007). [CrossRef]
  3. N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X.-C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,” Semicond. Sci. Technol. 20(7), S293–S299 (2005). [CrossRef]
  4. H.-W. Hübers, “Terahertz Heterodyne Receivers,” IEEE J. Sel. Top. Quantum Electron. 14(2), 378–391 (2008). [CrossRef]
  5. S. Verghese, E. K. Duerr, K. A. McIntosh, S. M. Duffy, S. D. Calawa, C.-Y. E. Tong, R. Kimberk, and R. Blundell, “A photomixer local oscillator for a 630-GHz heterodyne receiver,” IEEE Microw. Guided Wave Lett. 9(6), 245–247 (1999). [CrossRef]
  6. I. Cámara Mayorga, P. M. Pradas, M. Mikulics, A. Schmitz, P. van der Wal, C. Kasemann, R. Güsten, K. Jacobs, M. Marso, H. Lüth, and P. Kordoš, “Terahertz photonic mixers as local oscillators for hot electron bolometer and superconductor-insulator-superconductor astronomical receivers,” J. Appl. Phys. 100(4), 043116 (2006). [CrossRef]
  7. S. Kohjiro, K. Kikuchi, M. Maezawa, T. Furuta, A. Wakatsuki, H. Ito, N. Shimizu, T. Nagatsuma, and Y. Kado, “A 0.2–0.5 THz single-band heterodyne receiver based on a photonic local oscillator and a superconductor-insulator-superconductor mixer,” Appl. Phys. Lett. 93(9), 093508 (2008). [CrossRef]
  8. M. C. Wanke, E. W. Young, C. D. Nordquist, M. J. Cich, A. D. Grine, C. T. Fuller, J. L. Reno, and M. Lee, “Monolithically integrated solid-state terahertz transceivers,” Nat. Photonics 4(8), 565–569 (2010). [CrossRef]
  9. M. Tsuchiya and T. Hoshida, “Nonlinear Photodetection Scheme and Its System Applications to Fiber-Optic Millimeter-Wave Wireless Down-Links,” IEEE Trans. Microw. Theory Tech. 47(7), 1342–1350 (1999). [CrossRef]
  10. J.-W. Shi, Y.-S. Wu, and Y.-S. Lin, “Near-Ballistic Uni-Traveling-Carrier Photodiode- Based V-Band Optoelectronic Mixers with Internal up-Conversion-Gain, Wide Modulation Bandwidth, and Very High Operation Current Performance,” IEEE Photon. Technol. Lett. 20(11), 939–941 (2008). [CrossRef]
  11. H. Pan, Z. Li, and J. C. Campbell, “High-Power High-Responsivity Modified Uni-Traveling-Carrier Photodiode Used as V-Band Optoelectronic mixer,” J. Lightwave Technol. 28(8), 1184–1189 (2010). [CrossRef]
  12. E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, “Traveling-wave Uni-Traveling Carrier photodiodes for continuous wave THz generation,” Opt. Express 18(11), 11105–11110 (2010). [CrossRef] [PubMed]
  13. C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. J. Cannard, R. Moore, and A. J. Seeds, “A high responsivity, broadband waveguide uni-traveling carrier photodiode,” Proc. SPIE 6194, 61940C, 61940C-8 (2006). [CrossRef]
  14. N. J. Gomes and A. J. Seeds, “Novel optically pumped electronic mixer using a Mott diode structure,” Electron. Lett. 23(20), 1084–1085 (1987). [CrossRef]
  15. S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73(26), 3824–3826 (1998). [CrossRef]
  16. B. Sartorius, M. Schlak, D. Stanze, H. Roehle, H. Künzel, D. Schmidt, H.-G. Bach, R. Kunkel, and M. Schell, “Continuous wave terahertz systems exploiting 1.5 µm telecom technologies,” Opt. Express 17(17), 15001–15007 (2009). [CrossRef] [PubMed]
  17. T. Nagatsuma, A. Kaino, S. Hisatake, K. Ajito, H.-J. Song, A. Wakatsuki, Y. Muramoto, N. Kukutsu, and Y. Kado, “Continuous-wave Terahertz Spectroscopy System Based on Photodiodes,” PIERS Online 6(4), 390–394 (2010). [CrossRef]
  18. C. C. Renaud, L. Ponnampalam, F. Pozzi, E. Rouvalis, D. Moodie, M. Robertson, and A. J. Seeds, “Photonically Enabled Communication Systems Beyond 1000 GHz,” International Topical Meeting on Microwave Photonics2008(MWP 2008), (Gold Coast, Australia), pp. 55–58.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited