OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 2126–2132

Resonance waveguide reflectors with semi-wide bandwidth at the visible wavelengths

Toni Saastamoinen, Tapani Alasaarela, Anni Lehmuskero, Ismo Vartiainen, Noora Heikkilä, and Markku Kuittinen  »View Author Affiliations

Optics Express, Vol. 19, Issue 3, pp. 2126-2132 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1336 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a resonance waveguide grating with relatively wide bandwidth in the visible region of the spectrum compared to typical resonance structures. The reflective properties of the grating are based on amorphous atomic layer deposited titanium dioxide which has rather high refractive index at the visible wavelengths. The resonance grating provides approximately 20–30 nm bandwidth with over 90% reflectance at the visible wavelengths. The measured reflectances of the fabricated elements show also very good agreement with the theoretical predictions. These kind of reflectors may be useful in applications that make use of LED sources.

© 2011 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(130.2790) Integrated optics : Guided waves
(050.5745) Diffraction and gratings : Resonance domain
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Integrated Optics

Original Manuscript: October 11, 2010
Revised Manuscript: December 9, 2010
Manuscript Accepted: December 27, 2010
Published: January 20, 2011

Toni Saastamoinen, Tapani Alasaarela, Anni Lehmuskero, Ismo Vartiainen, Noora Heikkilä, and Markku Kuittinen, "Resonance waveguide reflectors with semi-wide bandwidth at the visible wavelengths," Opt. Express 19, 2126-2132 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Magnusson, and S. S. Wang, "New principle for optical filters," Appl. Phys. Lett. 61, 1022-1024 (1992). [CrossRef]
  2. S. S. Wang, and R. Magnusson, "Theory and applications of guided-mode resonance filters," Appl. Opt. 32, 2606-2613 (1993). [CrossRef] [PubMed]
  3. T. Vallius, P. Vahimaa, and J. Turunen, "Pulse deformations at guided-mode resonance filters," Opt. Express 10, 840-843 (2002). [PubMed]
  4. M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, "Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating," Appl. Phys. Lett. 91, 111109 (2007). [CrossRef]
  5. P. Karvinen, T. Nuutinen, O. Hyvärinen, and P. Vahimaa, "Enhancement of laser-induced fluorescence at 473 nm excitation with subwavelength resonant waveguide gratings," Opt. Express 16, 16364-16370 (2008). [CrossRef] [PubMed]
  6. C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, "Ultrabroadband Mirror Using Low-Index Cladded Subwavelength Grating," IEEE Photon. Technol. Lett. 16, 518-520 (2004). [CrossRef]
  7. Y. Ding, and R. Magnusson, "Resonant leaky-mode spectral-band engineering and device applications," Opt. Express 12, 5661-5674 (2004). [CrossRef] [PubMed]
  8. R. Magnusson, and M. Shokooh-Saremi, "Physical basis for wideband resonant reflectors," Opt. Express 16, 3456-3462 (2008). [CrossRef] [PubMed]
  9. M. Shokooh-Saremi, and R. Magnusson, "Leaky-mode resonant reflectors with extreme bandwidths," Opt. Lett. 35, 1121-1123 (2010). [CrossRef] [PubMed]
  10. C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, "Broad-band mirror (1.12-1.62 m) using a subwavelength grating," IEEE Photon. Technol. Lett. 16, 1676-1678 (2004). [CrossRef]
  11. L. Chen, M. C. Y. Huang, C. F. R. Mateus, C. J. Chang-Hasnain, and Y. Suzuki, "Fabrication and design of an integrable subwavelength ultrabroadband dielectric mirror," Appl. Phys. Lett. 88, 031102 (2006). [CrossRef]
  12. J. M. Kontio, J. Simonen, K. Leinonen, M. Kuittinen, and T. Niemi, "Broadband infrared mirror using guided mode resonance in a subwavelength germanium grating," Opt. Lett. 35, 2564-2566 (2010). [CrossRef] [PubMed]
  13. H. Wu, J. Hou, W. Mo, D. Gao, and Z. Zhou, "A broadband reflector using a multilayered grating structure with multi-subpart profile," Appl. Phys. B 99, 519-524 (2010). [CrossRef]
  14. A. Ricciardi, S. Campopiano, A. Cusano, T. F. Krauss, and L. O’Faolain, "Broadband Mirrors in the Near-Infrared Based on Subwavelength Gratings in SOI," IEEE Photon. J. 2, 696-702 (2010). [CrossRef]
  15. T. Alasaarela, T. Saastamoinen, J. Hiltunen, A. Säynätjoki, A. Tervonen, P. Stenberg, M. Kuittinen, and S. Honkanen, "Atomic layer deposited titanium dioxide and its application in resonant waveguide grating," Appl. Opt. 49, 4321-4325 (2010). [CrossRef] [PubMed]
  16. J. Turunen, "Diffraction theory of microrelief gratings," in Micro-optics: Elements, Systems and Applications, H. Herzig, ed. (Taylor & Francis, 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited