OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 2133–2147

Ultrafast all-optical implementation of a leaky integrate-and-fire neuron

Konstantin Kravtsov, Mable P. Fok, David Rosenbluth, and Paul R. Prucnal  »View Author Affiliations

Optics Express, Vol. 19, Issue 3, pp. 2133-2147 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1418 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we demonstrate for the first time an ultrafast fully functional photonic spiking neuron. Our experimental setup constitutes a complete all-optical implementation of a leaky integrate-and-fire neuron, a computational primitive that provides a basis for general purpose analog optical computation. Unlike purely analog computational models, spiking operation eliminates noise accumulation and results in robust and efficient processing. Operating at gigahertz speed, which corresponds to at least 108 speed-up compared with biological neurons, the demonstrated neuron provides all functionality required by the spiking neuron model. The two demonstrated prototypes and a demonstrated feedback operation mode prove the feasibility and stability of our approach and show the obtained performance characteristics.

© 2011 Optical Society of America

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(200.4260) Optics in computing : Neural networks
(200.4700) Optics in computing : Optical neural systems

ToC Category:
Optics in Computing

Original Manuscript: November 3, 2010
Manuscript Accepted: January 10, 2011
Published: January 20, 2011

Konstantin S. Kravtsov, Mable P. Fok, Paul R. Prucnal, and David Rosenbluth, "Ultrafast All-Optical Implementation of a Leaky Integrate-and-Fire Neuron," Opt. Express 19, 2133-2147 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C.-H. Wang, and B. K. Jenkins, “Subtracting incoherent optical neuron model: analysis, experiment, and applications,” Appl. Opt. 29, 2171–2186 (1990). [PubMed]
  2. A. V. Grigor’yants, and I. N. Dyuzhikov, “Formation of a neuron-like pulsed response in a semiconductor resonator cavity with competing optical nonlinearities,” Kvant. Elektron. 21, 511–512 (1994) (Sov. J. Quantum Electron. 24, 469–470 (1994)).
  3. S. Tariq, M. K. Habib, and H. A. Helmy, “Opto-electronic neuron-type operation via stimulated Raman scattering in optical fiber,” J. Lightwave Technol. 15, 938–947 (1997).
  4. E. C. Mos, J. J. L. Hoppenbrouwers, M. T. Hill, M. W. Blum, J. J. H. B. Schleipen, and H. de Waardt, “Optical neuron by use of a laser diode with injection seeding and external optical feedback,” IEEE Trans. Neural Netw. 11, 988–996 (2000).
  5. G. Moagar-Poladian, “Reconfigurable optical neuron based on photoelectret materials,” Appl. Opt. 39, 782–787 (2000).
  6. M. T. Hill, E. E. E. Frietman, H. de Waardt, G.-d. Khoe, and H. J. S. Dorren, “All fiber-optic neural network using coupled SOA based ring lasers,” IEEE Trans. Neural Netw. 13, 1504–1513 (2002).
  7. G. Moagar-Poladian, and M. Bulinski, “Optical reconfigurable neuron by using the transverse Pockels effect,” J. Optoelectron. Adv. Mater. 4, 929–936 (2002).
  8. R. J. Vogelstein, U. Mallik, J. T. Vogelstein, and G. Cauwenberghs, “Dynamically reconfigurable silicon array of spiking neurons with conductance-based synapses,” IEEE Trans. Neural Netw. 18, 253–265 (2007). [PubMed]
  9. G. Indiveri, E. Chicca, and R. Douglas, “A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity,” IEEE Trans. Neural Netw. 17, 211–221 (2006). [PubMed]
  10. R. Pashaie, and N. H. Farhat, “Optical realization of bioinspired spiking neurons in the electron trapping material thin film,” Appl. Opt. 46, 8411–8418 (2007). [PubMed]
  11. A. R. S. Romariz, and K. H. Wagner, “Tunable vertical-cavity surface-emitting laser with feedback to implement a pulsed neural model. 1. Principles and experimental demonstration,” Appl. Opt. 46, 4736–4745 (2007). [PubMed]
  12. A. R. S. Romariz, and K. H. Wagner, “Tunable vertical-cavity surface-emitting laser with feedback to implement a pulsed neural model. 2. High-frequency effects and optical coupling,” Appl. Opt. 46, 4746–4753 (2007). [PubMed]
  13. S. Beri, L. Mashall, L. Gelens, G. Van der Sande, G. Mezosi, M. Sorel, J. Danckaert, and G. Verschaffelt, “Excitability in optical systems close to Z2-symmetry,” Phys. Lett. A 374, 739–743 (2010).
  14. D. Rosenbluth, K. Kravtsov, M. P. Fok, and P. R. Prucnal, “A high performance photonic pulse processing device,” Opt. Express 17, 22767–22772 (2009).
  15. C. Koch, Biophysics of Computation (Oxford University Press, 1999).
  16. W. Maass, and C. M. Bishop, eds., Pulsed Neural Networks (The MIT Press, 1999).
  17. R. Sarpeshkar, “Analog versus digital: Extrapolating from electronics to neurobiology,” Neural Comput. 10, 1601–1638 (1998). [PubMed]
  18. K. Kravtsov, P. R. Prucnal, and M. M. Bubnov, “Simple nonlinear interferometer-based all-optical thresholder and its applications for optical CDMA,” Opt. Express 15, 13114–13122 (2007). [PubMed]
  19. M. Premaratne, D. Neˇsi’c, and G. P. Agrawal, “Pulse amplification and gain recovery in semiconductor optical amplifiers: A systematic analytical approach,” J. Lightwave Technol. 26, 1653–1660 (2008).
  20. E. M. Dianov, and V. M. Mashinsky, “Germania-based core optical fibers,” J. Lightwave Technol. 23, 3500–3508 (2005).
  21. J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5, 787–790 (1993).
  22. T. Aida, and P. Davis, “Storage of optical pulse data sequences in loop memory using multistable oscillations,” Electron. Lett. 27, 1544–1546 (1991).
  23. M. Nakazawa, K. Suzuki, E. Yamada, H. Kubota, Y. Kimura, and M. Takaya, “Experimental demonstration of soliton data transmission over unlimited distances with soliton control in time and frequency domains,” Electron. Lett. 29, 729–730 (1993).
  24. C. R. Doerr, W. S. Wong, H. A. Haus, and E. P. Ippen, “Additive-pulse mode-locking/limiting storage ring,” Opt. Lett. 19, 1747–1749 (1994). [PubMed]
  25. J. D. Moores, K. L. Hall, S. M. LePage, K. A. Rauschenbach, W. S. Wong, H. A. Haus, and E. P. Ippen, “20-GHz optical storage loop/laser using amplitude modulation, filtering, and artificial fast saturable absorption,” IEEE Photon. Technol. Lett. 7, 1096–1098 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited