OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 2148–2157

Optical antennas integrated with concentric ring gratings: electric field enhancement and directional radiation

Dongxing Wang, Tian Yang, and Kenneth B. Crozier  »View Author Affiliations

Optics Express, Vol. 19, Issue 3, pp. 2148-2157 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1135 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a means for improving the coupling of illumination to, and the collection of scattered radiation from, an optical antenna. This is achieved by integrating optical antennas with concentric ring gratings. Electromagnetic simulations demonstrate that the ring grating improves the coupling to the antenna, even if the incident illumination is focused by an aplanatic lens such as a microscope objective. Dipole radiation from the center of the structure is well collimated. Various aspects of field enhancement and dipole radiation behavior are analyzed. We propose this device for Raman scattering enhancement.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:
Optics at Surfaces

Original Manuscript: November 4, 2010
Revised Manuscript: December 17, 2010
Manuscript Accepted: December 25, 2010
Published: January 20, 2011

Virtual Issues
Vol. 6, Iss. 2 Virtual Journal for Biomedical Optics

Dongxing Wang, Tian Yang, and Kenneth B. Crozier, "Optical antennas integrated with concentric ring gratings: electric field enhancement and directional radiation," Opt. Express 19, 2148-2157 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. A. Long, “Raman Spectroscopy,” McGraw-Hill, New York, 1977.
  2. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632 (2003). [CrossRef]
  3. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120 (2006). [CrossRef]
  4. N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Höfler, “Plasmonic quantum cascade laser antenna,” Appl. Phys. Lett. 91(17), 173113 (2007). [CrossRef]
  5. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005). [CrossRef] [PubMed]
  6. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002). [CrossRef] [PubMed]
  7. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003). [CrossRef] [PubMed]
  8. M. Beruete, I. Campillo, J. S. Dolado, J. E. Rodríguez-Seco, E. Perea, F. Falcone, and M. Sorolla, ““Very low-profile “Bull’s Eye” feeder antenna,” IEEE Antennas Wirel. Propag. Lett. 4(1), 365–368 (2005). [CrossRef]
  9. K. Ishihara, T. Ikari, H. Minamide, J. Shikata, K. Ohashi, H. Yokoyama, and H. Ito, “Terahertz near-field imaging using enhanced transmission through a single subwavelength aperture,” Jpn. J. Appl. Phys. 44(29), L929–L931 (2005). [CrossRef]
  10. K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, H. Yokoyama, J. Shikata, and H. Ito, “Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture,” Appl. Phys. Lett. 89(20), 201120 (2006). [CrossRef]
  11. Q. Min, M. J. L. Santos, E. M. Girotto, A. G. Brolo, and R. Gordon, “Localized Raman enhancement from a double-hole nanostructure in a metal film,” J. Phys. Chem. Lett. C 112(39), 15098–15101 (2008). [CrossRef]
  12. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998). [CrossRef]
  13. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  14. D. Wang, T. Yang, and K. B. Crozier, “Charge and current reservoirs for electric and magnetic field enhancement,” Opt. Express 18(10), 10388–10394 (2010). [CrossRef] [PubMed]
  15. K. Sendur, W. Challener, and O. Mryasov, “Interaction of spherical nanoparticles with a highly focused beam of light,” Opt. Express 16(5), 2874–2886 (2008). [CrossRef] [PubMed]
  16. K. Sendur, “An integral equation based numerical solution for nanoparticles illuminated with collimated and focused light,” Opt. Express 17(9), 7419–7430 (2009). [CrossRef] [PubMed]
  17. K. Sendur and A. Sahinöz, “Interaction of radially polarized focused light with a prolate spheroidal nanoparticle,” Opt. Express 17(13), 10910–10925 (2009). [CrossRef] [PubMed]
  18. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  19. E. C. Le Ru and P. G. Ethchegoin, “Rigorous justification of the |E|4enhancement factor in surface enhanced Raman spectroscopy,” Chem. Phys. Lett. 423, 63 (2006). [CrossRef]
  20. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. Roy. Soc. A 253358 (1959). [See also L. Novotny and B. Hecht, “Principles of nano-optics,” Cambridge, (2006)]. [CrossRef]
  21. E. Bailo and V. Deckert, “Tip-enhanced Raman scattering,” Chem. Soc. Rev. 37(5), 921–930 (2008). [CrossRef] [PubMed]
  22. Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited