OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 2158–2164

Three-stage Fabry–Perot liquid crystal tunable filter with extended spectral range

Zhenrong Zheng, Guowei Yang, Haifeng Li, and Xu Liu  »View Author Affiliations

Optics Express, Vol. 19, Issue 3, pp. 2158-2164 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (993 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A method to extend the spectral range of a tunable optical filter is proposed in this paper. Two identical Fabry-Perot filters and an additional tunable filter with a different free spectral range are cascaded to extend the spectral range and reduce side lobes. Over 400 nm of free spectral range and 4 nm of FWHM of the filter are achieved. The design procedure and simulation are described in detail. An experimental three-stage tunable Fabry–Perot filter with visible and infrared spectra is demonstrated. The experimental results and the theoretical analysis are presented in detail to verify this method. The results reveal that a compact and extended tunable spectral range of Fabry–Perot filters can be easily attainable by this method.

© 2011 OSA

OCIS Codes
(120.2440) Instrumentation, measurement, and metrology : Filters
(160.3710) Materials : Liquid crystals
(230.3720) Optical devices : Liquid-crystal devices
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Optical Devices

Original Manuscript: November 10, 2010
Revised Manuscript: December 31, 2010
Manuscript Accepted: January 3, 2011
Published: January 20, 2011

Zhenrong Zheng, Guowei Yang, Haifeng Li, and Xu Liu, "Three-stage Fabry–Perot liquid crystal tunable filter with extended spectral range," Opt. Express 19, 2158-2164 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Kurosaki, H. Koshiishi, T. Suzuki, and K. Tsuchiya, “Development of tunable imaging spectro-polarimeter for remote sensing,” Adv. Space Res. 32(11), 2141–2146 (2003). [CrossRef]
  2. A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50(23), 5421–5441 (2005). [CrossRef] [PubMed]
  3. S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007). [CrossRef] [PubMed]
  4. N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000). [CrossRef]
  5. K. Hirabayashi and T. Kurokawa, “Liquid crystal devices for optical communication and information processing systems,” Liq. Cryst. 14(2), 307–317 (1993). [CrossRef]
  6. A. Sneh and K. M. Johnson, “High-speed continuously tunable liquid crystal filter for WDM networks,” J. Lightwave Technol. 14(6), 1067–1080 (1996). [CrossRef]
  7. G. A. Kopp, M. J. Derks, D. F. Elmore, D. M. Hassler, J. C. Woods, J. L. Streete, and J. G. Blankner, “Tunable liquid-crystal filter for solar imaging at the He i 1083-nm line,” Appl. Opt. 36(1), 291–296 (1997). [CrossRef] [PubMed]
  8. P. J. Miller, “Tunable narrowband birefringent filters for astronomical imaging,” Proc. SPIE 1235, 466–473 (1990). [CrossRef]
  9. S. Saeed and P. J. Bos, “Multispectrum, spatially addressable polarization interference filter,” J. Opt. Soc. Am. A 19(11), 2301–2312 (2002). [CrossRef]
  10. D. D. Huang, X. J. Yu, H. C. Huang, and H. S. Kwok, “Design of polarizing color filters with double-liquid-crystal cells,” Appl. Opt. 41(22), 4638–4644 (2002). [CrossRef] [PubMed]
  11. H. A. Tarry, “Electrically tunable narrowband optical filter,” Electron. Lett. 11(19), 471–472 (1975). [CrossRef]
  12. C. Ye, “Low-loss birefringent spectral filters comprising three identical retarders,” Appl. Opt. 45(31), 8044–8051 (2006). [CrossRef] [PubMed]
  13. G. Kopp, “Tunable birefringent filters using liquid crystal variable retarders,” Proc. SPIE 2873, 324–327 (1996).
  14. B. Lyot, “Optical apparatus with wide field using interference of polarized light,” C.R. Acad. Sci. (Paris) 197, 1593 (1933).
  15. I. Šolc, “Birefringent chain filters,” J. Opt. Soc. Am. 55(6), 621–625 (1965). [CrossRef]
  16. A. Frenkel and C. Lin, “Angle-tuned etalon filters for optical channel selection in high density wavelength division multiplexed systems,” J. Lightwave Technol. 7(4), 615–624 (1989). [CrossRef]
  17. B. Pezeshki, F. K. Tong, J. A. Kash, D. W. Kisker, and R. M. Potemski, “Tapered Fabry–Perot waveguide optical demultiplexer,” IEEE Photon. Technol. Lett. 5(9), 1082–1085 (1993). [CrossRef]
  18. T. Niemi, M. Uusimaa, S. Tammela, P. Heimala, T. Kajava, M. Kaivola, and H. Ludvigsen, “Tunable silicon etalon for simultaneous spectral filtering and wavelength monitoring of a DWDM transmitter,” IEEE Photon. Technol. Lett. 13(1), 58–60 (2001). [CrossRef]
  19. K. Hirabayashi, H. Tsuda, and T. Kurokawa, “Tunable wavelength-selective liquid crystal filters for 600-channel WDM system,” IEEE Photon. Technol. Lett. 4(6), 597–599 (1992). [CrossRef]
  20. O. Aharon and I. Abdulhalim, “Liquid crystal Lyot tunable filter with extended free spectral range,” Opt. Express 17(14), 11426–11433 (2009). [CrossRef] [PubMed]
  21. O. Aharon and I. Abdulhalim, “Tunable optical filter having a large dynamic range,” Opt. Lett. 34(14), 2114–2116 (2009). [CrossRef] [PubMed]
  22. A. A. M. Saleh and J. Stone, “Two-stage Fabry-Perot filters as demultiplexers in optical FDMA LAN's,” J. Lightwave Technol. 7(2), 323–330 (1989). [CrossRef]
  23. E.-A. Dorjgotov, A. K. Bhowmik, and P. J. Bos, “Switchable polarization-independent liquid-crystal Fabry-Perot filter,” Appl. Opt. 48(1), 74–79 (2009). [CrossRef]
  24. E. Dorjgotov, A. Bhowmik, and P. Bos, “Design of a wide bandwidth switchable mirror based on a liquid crystal etalon,” J. Appl. Phys. 105, 104906 (2009) [CrossRef]
  25. S. A. Alboon and R. G. Lindquist, “Flat top liquid crystal tunable filter using coupled Fabry-Perot cavities,” Opt. Express 16(1), 231–236 (2008). [CrossRef] [PubMed]
  26. A. H. Atabaki, B. Momeni, A. A. Eftekhar, E. S. Hosseini, S. Yegnanarayanan, and A. Adibi, “Tuning of resonance-spacing in a traveling-wave resonator device,” Opt. Express 18(9), 9447–9455 (2010). [CrossRef] [PubMed]
  27. Q. Li, M. Soltani, S. Yegnanarayanan, and A. Adibi, “Design and demonstration of compact, wide bandwidth coupled-resonator filters on a siliconon- insulator platform,” Opt. Express 17(4), 2247–2254 (2009). [CrossRef] [PubMed]
  28. R. Boeck, N. A. Jaeger, N. Rouger, and L. Chrostowski, “Series-coupled silicon racetrack resonators and the Vernier effect: theory and measurement,” Opt. Express 18(24), 25151–25157 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited