OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 2204–2215

Continuously tunable microdroplet-laser in a microfluidic channel

Sindy K. Y. Tang, Ratmir Derda, Qimin Quan, Marko Lončar, and George M. Whitesides  »View Author Affiliations

Optics Express, Vol. 19, Issue 3, pp. 2204-2215 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1268 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper describes the generation and optical characterization of a series of dye-doped droplet-based optical microcavities with continuously decreasing radius in a microfluidic channel. A flow-focusing nozzle generated the droplets (~21 μm in radius) using benzyl alcohol as the disperse phase and water as the continuous phase. As these drops moved down the channel, they dissolved, and their size decreased. The emission characteristics from the drops could be matched to the whispering gallery modes from spherical micro-cavities. The wavelength of emission from the drops changed from 700 to 620 nm as the radius of the drops decreased from 21 μm to 7 μm. This range of tunability in wavelengths was larger than that reported in previous work on droplet-based cavities.

© 2011 OSA

OCIS Codes
(140.2050) Lasers and laser optics : Dye lasers
(140.3948) Lasers and laser optics : Microcavity devices

ToC Category:
Lasers and Laser Optics

Original Manuscript: September 20, 2010
Revised Manuscript: November 28, 2010
Manuscript Accepted: December 6, 2010
Published: January 21, 2011

Virtual Issues
Vol. 6, Iss. 2 Virtual Journal for Biomedical Optics

Sindy K. Y. Tang, Ratmir Derda, Qimin Quan, Marko Lončar, and George M. Whitesides, "Continuously tunable microdroplet-laser in a microfluidic channel," Opt. Express 19, 2204-2215 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. C. Hill, and R. E. Benner, “Morphology-dependent resonances,” in Optical Effects Associated with Small Particles, R. K. Chang, and P. W. Barber, eds. (World Scientific Publishing Co., 1988), pp. 3–61.
  2. R. K. Chang, and A. J. Campillo, Optical Processes in Microcavities (World Scientific Publishing Co., 1996).
  3. H. M. Tzeng, K. F. Wall, M. B. Long, and R. K. Chang, “Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances,” Opt. Lett. 9(11), 499–501 (1984). [CrossRef] [PubMed]
  4. H. M. Tzeng, K. F. Wall, M. B. Long, and R. K. Chang, “Evaporation and condensation rates of liquid droplets deduced from structure resonances in the fluorescence spectra,” Opt. Lett. 9(7), 273–275 (1984). [CrossRef] [PubMed]
  5. H. M. Tzeng, M. B. Long, R. K. Chang, and P. W. Barber, “Laser-induced shape distortions of flowing droplets deduced from morphology-dependent resonances in fluorescence spectra,” Opt. Lett. 10(5), 209–211 (1985). [CrossRef] [PubMed]
  6. S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009). [CrossRef] [PubMed]
  7. J. Schäfer, J. P. Mondia, R. Sharma, Z. H. Lu, A. S. Susha, A. L. Rogach, and L. J. Wang, “Quantum dot microdrop laser,” Nano Lett. 8(6), 1709–1712 (2008). [CrossRef] [PubMed]
  8. M. Saito, H. Shimatani, and H. Naruhashi, “Tunable whispering gallery mode emission from a microdroplet in elastomer,” Opt. Express 16(16), 11915–11919 (2008). [CrossRef] [PubMed]
  9. S. X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231(4737), 486–488 (1986). [CrossRef] [PubMed]
  10. M. M. Mazumder, G. Chen, P. J. Kindlmann, R. K. Chang, and J. B. Gillespie, “Temperature-dependent wavelength shifts of dye lasing in microdroplets with a thermochromic additive,” Opt. Lett. 20(16), 1668–1670 (1995). [CrossRef] [PubMed]
  11. M. M. Mazumder, G. Chen, R. K. Chang, and J. B. Gillespie, “Wavelength shifts of dye lasing in microdroplets: effect of absorption change,” Opt. Lett. 20(8), 878–880 (1995). [CrossRef] [PubMed]
  12. H. B. Lin, A. L. Huston, B. L. Justus, and A. J. Campillo, “Some characteristics of a droplet whispering-gallery-mode laser,” Opt. Lett. 11(10), 614–616 (1986). [CrossRef] [PubMed]
  13. H. B. Lin, J. D. Eversole, and A. J. Campillo, “Spectral properties of lasing microdroplets,” J. Opt. Soc. Am. B 9(1), 43–50 (1992). [CrossRef]
  14. A. Kiraz, A. Kurt, M. A. Dündar, and A. L. Demirel, “Simple largely tunable optical microcavity,” Appl. Phys. Lett. 89(8), 081118 (2006). [CrossRef]
  15. C. G. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phys. Rev. 124(6), 1807–1809 (1961). [CrossRef]
  16. G. Chen, M. M. Mazumder, Y. R. Chemla, A. Serpenguzel, R. K. Chang, and S. C. Hill, “Wavelength variation of laser emission along the entire rim of slightly deformed microdroplets,” Opt. Lett. 18(23), 1993–1995 (1993). [CrossRef] [PubMed]
  17. A. J. Campillo, J. D. Eversole, and H. B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets,” Phys. Rev. Lett. 67(4), 437–440 (1991). [CrossRef] [PubMed]
  18. P. Garstecki, I. Gitlin, W. DiLuzio, G. M. Whitesides, E. Kumacheva, and H. A. Stone, “Formation of monodisperse bubbles in a microfluidic flow-focusing device,” Appl. Phys. Lett. 85(13), 2649–2651 (2004). [CrossRef]
  19. Z. H. Nie, M. S. Seo, S. Q. Xu, P. C. Lewis, M. Mok, E. Kumacheva, G. M. Whitesides, P. Garstecki, and H. A. Stone, “Emulsification in a microfluidic flow-focusing device: effect of the viscosities of the liquids,” Microfluid. Nanofluid. 5, 585–594 (2008).
  20. P. Garstecki, H. A. Stone, and G. M. Whitesides, “Mechanism for flow-rate controlled breakup in confined geometries: a route to monodisperse emulsions,” Phys. Rev. Lett. 94(16), 164501 (2005). [CrossRef] [PubMed]
  21. S. L. Anna, N. Bontoux, and H. A. Stone, “Formation of dispersions using “flow focusing” in microchannels,” Appl. Phys. Lett. 82(3), 364–366 (2003). [CrossRef]
  22. J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000). [CrossRef] [PubMed]
  23. P. Garstecki, M. J. Fuerstman, H. A. Stone, and G. M. Whitesides, “Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up,” Lab Chip 6(3), 437–446 (2006). [CrossRef] [PubMed]
  24. S. K. Y. Tang, C. A. Stan, and G. M. Whitesides, “Dynamically reconfigurable liquid-core liquid-cladding lens in a microfluidic channel,” Lab Chip 8(3), 395–401 (2008). [CrossRef] [PubMed]
  25. W. Lee, L. M. Walker, and S. L. Anna, “Role of geometry and fluid properties in droplet and thread formation processes in planar flow focusing,” Phys. Fluids 21(3), 032103 (2009). [CrossRef]
  26. The polydispersity is calculated as s/d, where s is the standard deviation in drop diameters, and d is the average drop diameter. We imaged 60 drops and used a custom-made Matlab program to extract the droplet diameters.
  27. To prepare the saturated solutions, we mixed 1:1 ratio of benzyl alcohol and water. We stirred the mixture for 30 min at 60 degree C. We then centrifuged the mixture, and extracted the top phase (water saturated with benzyl alcohol) and bottom phase (benzyl alcohol saturated with water).
  28. J. I. Park, Z. Nie, A. Kumachev, and E. Kumacheva, “A microfluidic route to small CO2 microbubbles with narrow size distribution,” Soft Matter 6(3), 630–634 (2010). [CrossRef]
  29. C. C. Lam, P. T. Leung, and K. Young, “Explicit asymptotic formulas for the positions, widths, and strengths of resonances in Mie scattering,” J. Opt. Soc. Am. B 9(9), 1585–1592 (1992). [CrossRef]
  30. J. D. Eversole, H. B. Lin, A. L. Huston, A. J. Campillo, P. T. Leung, S. Y. Liu, and K. Young, “High-precision identification of morphology-dependent resonances in optical processes in microdroplets,” J. Opt. Soc. Am. B 10(10), 1955–1968 (1993). [CrossRef]
  31. J. Clausell-Tormos, D. Lieber, J.-C. Baret, A. El-Harrak, O. J. Miller, L. Frenz, J. Blouwolff, K. J. Humphry, S. Köster, H. Duan, C. Holtze, D. A. Weitz, A. D. Griffiths, and C. A. Merten, “Droplet-based microfluidic platforms for the encapsulation and screening of Mammalian cells and multicellular organisms,” Chem. Biol. 15(5), 427–437 (2008). [CrossRef] [PubMed]
  32. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited