OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 2225–2241

Bonding, antibonding and tunable optical forces in asymmetric membranes

Alejandro W. Rodriguez, Alexander P. McCauley, Pui-Chuen Hui, David Woolf, Eiji Iwase, Federico Capasso, Marko Loncar, and Steven G. Johnson  »View Author Affiliations


Optics Express, Vol. 19, Issue 3, pp. 2225-2241 (2011)
http://dx.doi.org/10.1364/OE.19.002225


View Full Text Article

Enhanced HTML    Acrobat PDF (1409 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate that tunable attractive (bonding) and repulsive (anti-bonding) forces can arise in highly asymmetric structures coupled to external radiation, a consequence of the bonding/anti-bonding level repulsion of guided-wave resonances that was first predicted in symmetric systems. Our focus is a geometry consisting of a photonic-crystal (holey) membrane suspended above an unpatterned layered substrate, supporting planar waveguide modes that can couple via the periodic modulation of the holey membrane. Asymmetric geometries have a clear advantage in ease of fabrication and experimental characterization compared to symmetric double-membrane structures. We show that the asymmetry can also lead to unusual behavior in the force magnitudes of a bonding/antibonding pair as the membrane separation changes, including nonmonotonic dependences on the separation. We propose a computational method that obtains the entire force spectrum via a single time-domain simulation, by Fourier-transforming the response to a short pulse and thereby obtaining the frequency-dependent stress tensor. We point out that by operating with two, instead of a single frequency, these evanescent forces can be exploited to tune the spring constant of the membrane without changing its equilibrium separation.

© 2011 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(230.4320) Optical devices : Nonlinear optical devices

ToC Category:
Nonlinear Optics

History
Original Manuscript: November 19, 2010
Revised Manuscript: January 14, 2011
Manuscript Accepted: January 16, 2011
Published: January 21, 2011

Citation
Alejandro W. Rodriguez, Alexander P. McCauley, Pui-Chuen Hui, David Woolf, Eiji Iwase, Federico Capasso, Marko Loncar, and Steven G. Johnson, "Bonding, antibonding and tunable optical forces in asymmetric membranes," Opt. Express 19, 2225-2241 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-3-2225


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, "Applications of laser radiation pressure," Science 210(4474), 1081-1088 (1980). [CrossRef] [PubMed]
  2. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1998).
  3. D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003). [CrossRef] [PubMed]
  4. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, "Controlling photonic structures using optical forces," Nature 462(7273), 633-636 (2009). [CrossRef] [PubMed]
  5. M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, "Evanescent-wave bonding between optical waveguides," Opt. Lett. 30, 3042 (2005). [CrossRef] [PubMed]
  6. S. Kawata, and T. Tani, "Optically driven Mie particles in an evanescent field along a channeled waveguide," Opt. Lett. 21(21), 1768-1770 (1996). [CrossRef] [PubMed]
  7. M. Vogel, C. Mooser, K. Karrai, and R. J. Warburton, "Optically tunable mechanics of microlevers," Appl. Phys. Lett. 83, 1337 (2003). [CrossRef]
  8. C. H. Metzger, and K. Karrai, "Cavity cooling of a microlever," Nature 432, 1002-1005 (2004). [CrossRef] [PubMed]
  9. W. Suh, O. Solgaard, and S. Fan, "Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs," J. Appl. Phys. 98(3), 033102 (2005). [CrossRef]
  10. K. Halterman, J. M. Elson, and S. Singh, "Plasmonic resonances and electromagnetic forces between coupled silver nanowires," Phys. Rev. B 72(7), 075429 (2005). [CrossRef]
  11. B. S. Schmidt, A. H. Yang, D. Erickson, and M. Lipson, "Optofluidic trapping and transport on solid core waveguides within a microfluidic device," Opt. Express 15(22), 14322-14334 (2007). [CrossRef] [PubMed]
  12. I. Favero, C. Metzger, S. Camerer, D. Konig, H. Lorenz, J. P. Kotthaus, and K. Karrai, "Optical cooling of a micromirror of wavelength size," Appl. Phys. Lett. 90, 104101 (2007). [CrossRef]
  13. A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, "Dispersive optomechanics: a membrane inside a cavity," N. J. Phys. 10(9), 095008 (2008). [CrossRef]
  14. H. Taniyama, M. Notomi, E. Kuramochi, T. Yamamoto, Y. Yoshikawa, Y. Torii, and T. Kuga, "Strong radiation force induced in two-dimensional photonic crystal slab cavities," Phys. Rev. B 78(16), 165129 (2008). [CrossRef]
  15. G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Riviere, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, "Near-field cavity optomechanics with nanomechanical oscillators," Nat. Phys. 5(12), 909-914 (2009). [CrossRef]
  16. T.-W. Lu, and P.-T. Lee, "Ultra-high sensitivity optical stress sensor based on double-layered photonic crystal microcavity," Opt. Express 17(3), 1518-1526 (2009). [CrossRef] [PubMed]
  17. S. Arnold, D. Keng, S. I. Shopova, S. Holler, W. Zurawsky, and F. Vollmer, "Whispering gallery mode carousel: a photonic mechanism for enhanced nanoparticle detection in biosensing," Opt. Express 17(8), 6230-6238 (2009). [CrossRef] [PubMed]
  18. S. Lin, J. Hu, L. Kimerling, and K. Crozier, "Design of nanoslotted photonic crystal waveguide cavities for single nanoparticle trapping and detection," Opt. Lett. 34(21), 3451-3453 (2009). [CrossRef] [PubMed]
  19. M. Li, W. H. P. Pernice, and H. X. Tang, "Tunable bipolar optical interactions between guided lightwaves," Nat. Photonics 3(8), 464-468 (2009). [CrossRef]
  20. J. Rosenberg, Q. Lin, and O. Painter, "Static and dynamic wavelength routing via the gradient optical force," Nat. Photonics 3(8), 478-483 (2009). [CrossRef]
  21. A. H. Yang, S. D. Moorse, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, "Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides," Nature 457, 71-75 (2009). [CrossRef] [PubMed]
  22. S. Groblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, "Observation of strong coupling between a micromechanical resonator and an optical cavity field," Nature 460(7256), 724-727 (2009). [CrossRef] [PubMed]
  23. W. H. P. Pernice, M. Li, K. Y. Fong, and H. X. Tang, "Modeling of the optical force between propagating lightwaves in parallel 3D waveguides," Opt. Express 17(18), 16032-16037 (2009). [CrossRef] [PubMed]
  24. V. Liu, M. Povinelli, and S. Fan, "Resonance-enhanced optical forces between coupled photonic crystal slabs," Opt. Express 17(24), 21897-21909 (2009). [CrossRef] [PubMed]
  25. J. Roels, I. D. Vlaminck, L. Lagae, B. Maes, D. V. Throurout, and R. Baets, "Tunable optical forces between nanophotonic waveguides," Nat. Nanotechnol. 4, 510-513 (2009). [CrossRef] [PubMed]
  26. Y.-G. Roh, T. Tanabe, A. Shinya, H. Taniyama, E. Kuramochi, S. Matsuo, T. Sato, and M. Notomi, "Strong optomechanical interaction in a bilayer photonic crystal," Phys. Rev. B 81(12), 121101 (2010). [CrossRef]
  27. T. Stomeo, M. Grande, G. Rainò, A. Passaseo, A. D’Orazio, R. Cingolani, A. Locatelli, D. Modotto, C. D. Angelis, and M. D. Vittorio, "Optical filter based on two coupled PhC GaAs-membranes," Opt. Lett. 35(3), 411-413 (2010). [CrossRef] [PubMed]
  28. M. Aspelmeyer, S. Gröblacher, K. Hammerer, and N. Kiesel, "Quantum optomechanics—throwing a glance," J. Opt. Soc. Am. B 27(6), A189-A197 (2010). [CrossRef]
  29. S. Lin, E. Schonbrun, and K. Crozier, "Optical manipulation with planar silicon microring resonators," Nano Lett. 10(7), 2408-2411 (2010). [CrossRef] [PubMed]
  30. D. V. Thourhout, and J. Roels, "Optomechanical device actuation through the optical gradient force," Nat. Photonics 4, 211-217 (2010). [CrossRef]
  31. G. Wiederhecker, S. Manipatruni, S. Lee, and M. Lipson, "Broadband Tuning of Optomechanical Cavities," arXiv:1011.2067 (2010).
  32. W.-P. Huang, "Coupled-mode theory for optical waveguides: an overview," J. Opt. Soc. Am. A 11(3), 963-983 (1994). [CrossRef]
  33. J. Ng, C. T. Chan, P. Sheng, and Z. Lin, "Strong optical force induced by morphology-dependent resonances," Opt. Lett. 30(15), 1956-1958 (2005). [CrossRef] [PubMed]
  34. J. Chan, M. Eichenfield, R. Camacho, and O. Painter, "Optical and mechanical design of a "zipper" photonic crystal optomechanical cavity," Opt. Express 17(5), 3802-3817 (2009). [CrossRef] [PubMed]
  35. D. Woolf, M. Loncar, and F. Capasso, "The forces from coupled surface plasmon polaritons in planar waveguides," Opt. Express 17(22), 19996-20011 (2009). [CrossRef] [PubMed]
  36. T. J. Kippenberg, and K. J. Vahala, "Cavity optomechanics: Back-action at the mesoscale," Science 321, 1172-1176 (2008). [CrossRef] [PubMed]
  37. M. Povinelli, S. Johnson, M. Lonèar, M. Ibanescu, E. Smythe, F. Capasso, and J. Joannopoulos, "High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery- mode resonators," Opt. Express 13(20), 8286-8295 (2005). [CrossRef] [PubMed]
  38. K. J. Vahala, "Optical microcavities," Nature 424, 839-846 (2003). [CrossRef] [PubMed]
  39. T. J. Kippenberg, and K. J. Vahala, "Cavity Opto-Mechanics," Opt. Express 15(25), 17172-17205 (2007). [CrossRef] [PubMed]
  40. T. Hansch, and A. Schawlow, "Cooling of gases by laser radiation," Opt. Commun. 13(1), 68-69 (1975). [CrossRef]
  41. A. Schliesser, R. Riviere, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, "Resolved-sideband cooling of a micromechanical oscillator," Nat. Phys. 4, 415-419 (2008). [CrossRef]
  42. Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, "Mechanical Oscillation and Cooling Actuated by the Optical Gradient Force," Phys. Rev. Lett. 103(10), 103601 (2009). [CrossRef] [PubMed]
  43. A. Ashkin, "Acceleration and Trapping of Particles by Radiation Pressure," Phys. Rev. Lett. 24(4), 156-159 (1970). [CrossRef]
  44. S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, "Experimental Observation of Optically Trapped Atoms," Phys. Rev. Lett. 57(3), 314-317 (1986). [CrossRef] [PubMed]
  45. W. D. Phillips, P. L. Gould, and P. D. Lett, "Cooling, stopping and trapping atoms," Science 239(4842), 877-883 (1988). [CrossRef] [PubMed]
  46. K. Dholakia, "Micromanipulation: optoelectronic tweezers," Nat. Mater. 4, 579-580 (2005). [CrossRef] [PubMed]
  47. T. Corbitt, Y. Chen, E. Innerhofer, H. Müller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, and N. Mavalvala, "An all-optical trap for a gram-scale mirror," Phys. Rev. Lett. 98, 150802 (2007). [CrossRef] [PubMed]
  48. M. Aspelmeyer, and K. Schwab, "Focus on mechanical system at the quantum limit," N. J. Phys. 10(9), 095001 (2008). [CrossRef]
  49. U. Akram, N. Kiesel, M. Aspelmeyer, and G. J. Milburn, "Single-photon opto-mechanics in the strong coupling regime," N. J. Phys. 12(8), 083030 (2010). [CrossRef]
  50. L. D. Landau, and E. M. Lifshitz, Quantum Mechanics, 3rd ed. (Butterworth-Heinemann, Oxford, 1977).
  51. P. T. Rakich, M. A. Popovic, M. Soljacic, and E. P. Ippen, "Trapping, corralling and spectral bonding of optical resonances through optically induced potentials," Nat. Photonics 1, 658-665 (2007). [CrossRef]
  52. J. Ma, and M. L. Povinelli, "Effect of periodicity on optical forces between a one-dimensional periodic photonic crystal waveguide and an underlying substrate," Appl. Phys. Lett. 97, 151102 (2010). [CrossRef]
  53. I. W. Frank, P. B. Deotare, M. W. McCutcheon, and M. Lončar, "Programmable photonic crystal nanobeam cavities," Opt. Express 18(8), 8705-8712 (2010). [CrossRef] [PubMed]
  54. R. Perahia, J. Cohen, S. Meenehan, T. P. M. Alegre, and O. Painter, "Electrostatically tunable optomechanical "zipper" cavity laser," ArXiv e-prints (2010).
  55. F. M. Serry, D. Walliser, and M. G. Jordan, "The role of the Casimir effect in the static deflection of and stiction of membrane strips in microelectromechanical systems MEMS," J. Appl. Phys. 84, 2501 (1998). [CrossRef]
  56. H. B. Chan, V. A. Aksyuk, R. N. Kleinman, D. J. Bishop, and F. Capasso, "Quantum mechanical actuation of microelectromechanical systems by the Casimir force," Science 291, 1941-1944 (2001). [CrossRef] [PubMed]
  57. D. Zhang, X. Yuan, S. Tjin, and S. Krishnan, "Rigorous time domain simulation of momentum transfer between light and microscopic particles in optical trapping," Opt. Express 12(10), 2220-2230 (2004). [CrossRef] [PubMed]
  58. R. Gauthier, "Computation of the optical trapping force using an FDTD based technique," Opt. Express 13(10), 3707-3718 (2005). [CrossRef] [PubMed]
  59. D. C. Benito, S. H. Simpson, and S. Hanna, "FDTD simulations of forces on particles during holographic assembly," Opt. Express 16(5), 2942-2957 (2008). [CrossRef] [PubMed]
  60. M. Li, W. H. P. Pernice, and H. X. Tang, "Reactive Cavity Optical Force on Microdisk-Coupled Nanomechanical Beam Waveguides," Phys. Rev. Lett. 103(22), 223901 (2009). [CrossRef]
  61. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008). URL http://ab-initio.mit.edu/book.
  62. V. Yannopapas, "Optical forces near a plasmonic nanostructure," Phys. Rev. B 78(4), 045412 (2008). [CrossRef]
  63. J. J. Xiao, and C. T. Chan, "Calculation of the optical force on an infinite cylinder with arbitrary cross section by the boundary element method," J. Opt. Soc. Am. B 25(9), 1553-1561 (2008). [CrossRef]
  64. M. I. Antonoyiannakis, and J. B. Pendry, "Electromagnetic forces in photonic crystals," Phys. Rev. B 60(4), 2363-2374 (1999). [CrossRef]
  65. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech, Norwood, MA, 2000).
  66. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. Burr, J. D. Joannopoulos, and S. G. Johnson, "Improving accuracy by subpixel smoothing in the finite-difference time domain," Opt. Lett. 31, 2972-2974 (2006). [CrossRef] [PubMed]
  67. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, "MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method," Comput. Phys. Commun. 181, 687-702 (2010). [CrossRef]
  68. S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, "Perturbation theory for Maxwell’s equations with shifting material boundaries," Phys. Rev. E 65, 066611 (2002). [CrossRef]
  69. B. S. Sheard, M. B. Gray, C. M. Mow-Lowry, D. E. McClelland, and S. E. Whitcomb, "Observation and characterization of an optical spring," Phys. Rev. A 69, 051801 (2004). [CrossRef]
  70. M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, "Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide," Appl. Phys. Lett. 85, 1466-1468 (2004). [CrossRef]
  71. A. Mizrahi, and L. Schächter, "Two-slab all-optical spring," Opt. Lett. 32(6), 692-694 (2007). [CrossRef] [PubMed]
  72. T. P. M. Alegre, R. Perahia, and O. Painter, "Optomechanical zipper cavity lasers: theoretical analysis of tuning range and stability," Opt. Express 18(8), 7872-7885 (2010). [CrossRef] [PubMed]
  73. R. M. Camacho, J. Chan, M. Eichenfield, and O. Painter, "Characterization of radiation pressure and thermal effects in a nanoscale optomechanical cavity," Opt. Express 17(18), 15726-15735 (2009). [CrossRef] [PubMed]
  74. T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, "Analysis of Radiation-Pressure Induced Mechanical Oscillation of an Optical Microcavity," Phys. Rev. Lett. 95(3), 033901 (2005). [CrossRef] [PubMed]
  75. K. A. Milton, "The Casimir effect: recent controversies and progress," J. Phys. A 37, R209-R277 (2004). [CrossRef]
  76. F. Capasso, J. N. Munday, D. Iannuzzi, and H. B. Chan, "Casimir forces and quantum electrodynamical torques: Physics and nanomechanics," IEEE J. Sel. Top. Quantum Electron. 13(2), 400-415 (2007). [CrossRef]
  77. C. Genet, A. Lambrecht, and S. Reynaud, "The Casimir effect in the nanoworld," Eur. Phys. J. Spec. Top. 160, 183-193 (2008). [CrossRef]
  78. G. L. Klimchitskaya, U. Mohideen, and V. M. Mostapanenko, "The Casimir force between real materials: experiment and theory," Rev. Mod. Phys. 81(4), 1827-1885 (2009). [CrossRef]
  79. F. W. DelRio, M. P. de Boer, J. A. Knaap, E. D. J. Reedy, P. J. Clews, and M. L. Dunn, "The role of van der Waals forces in adhesion of micromachined surfaces," Nat. Mater. 4, 629-634 (2005). [CrossRef] [PubMed]
  80. K. L. Ekinci, and M. L. Roukes, "Nanoelectromechanical systems," Rev. Sci. Instrum. 76, 061101 (2005). [CrossRef]
  81. W. H. P. Pernice, M. Li, D. Garcia-Sanchez, and H. X. Tang, "Analysis of short range forces in opto-mechanical devices with a nanogap," Opt. Express 18(12), 12615-12621 (2010). [CrossRef] [PubMed]
  82. The interaction of normal-incident light with the membrane in this system can be exploited to simultaneously control and measure the membrane’s equilibrium separation.
  83. C. Cohen-Tannoudji, B. Din, and F. Laloë, Quantum Mechanics (Hermann, Paris, 1977).
  84. A. Messiah, Quantum Mechanics: Vol. II (Wiley, New York, 1976). Ch. 17.
  85. F. Shanhui, W. Suh, and J. D. Joannopoulos, "Temporal coupled-mode theory for the Fano resonance in optical resonators," J. Opt. Soc. Am. A 20(3), 569-572 (2003). [CrossRef]
  86. M. Lo, W. H. P. Pernice, T. Baehrs-Jones, M. Hochberg, and H. X. Tang, "Harnessing optical forces in integrated photonics circuits," Nano Lett. 456, 480-484 (2008).
  87. V. B. Braginskii, and A. B. Manukin, Measurement of Weak Forces in Physics Experiments (University of Chicago Press, 1977).
  88. A. Dorsel, J. McCullen, P. Meystre, E. Vignes, and H. Walther, "Optical bistability and mirror confinement induced by radiation pressure," Phys. Rev. Lett. 51, 1550-1553 (1983). [CrossRef]
  89. A. Mizrahi, and L. Schächter, "Electromagnetic forces on the dielectric layers of the planar optical Bragg acceleration structure," Phys. Rev. E 74(3), 036504 (2006). [CrossRef]
  90. C. A. Regal, J. D. Teufel, and K. W. Lehnert, "Measuring nanomechanical motion with a microwave cavity interferometer," Nat. Phys. 4, 555-560 (2008). [CrossRef]
  91. A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, "LIGO: The Laser Interferometer Gravitational-Wave Observatory," Science 256(5055), 325-333 (1992). [CrossRef] [PubMed]
  92. A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, "Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Back action," Phys. Rev. Lett. 97(24), 243905 (2006). [CrossRef]
  93. S. Gigan, H. R. Bohme, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, "Self-cooling of a micromirror by radiation pressure," Nature 444, 67-70 (2006). [CrossRef] [PubMed]
  94. D. Kleckner, and D. Bouwmeester, "Sub-Kelvin optical cooling of a micromechanical resonator," Nature 444, 75-78 (2006). [CrossRef] [PubMed]
  95. O. Arcizet, P. F. Cohadon, T. Briant, and A. Heidmann, "Radiation-pressure cooling and optomechanical instability of a micomirror," Nature 444, 71-74 (2006). [CrossRef] [PubMed]
  96. V. B. Braginsky, and A. B. Manukin, "Ponderomotive effects of electromagnetic radiation," Sov. Phys. JETP 25, 653-655 (1967).
  97. S. Manipatruni, J. T. Robinson, and M. Lipson, "Optical nonreciprocity in optomechanical structures," Phys. Rev. Lett. 102, 213903 (2009). [CrossRef] [PubMed]
  98. P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988).
  99. A. Mizrahi, and Y. Fainman, "Negative radiation pressure on gain medium structures," Opt. Lett. 35(20), 3405-3407 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited