OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 2257–2265

Aperiodic subwavelength Lüneburg lens with nonlinear Kerr effect compensation

Hanhong Gao, Satoshi Takahashi, Lei Tian, and George Barbastathis  »View Author Affiliations

Optics Express, Vol. 19, Issue 3, pp. 2257-2265 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1072 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce a Lüneburg lens design where Kerr nonlinearity is used to compensate for the focal point shift caused by diffraction of a Gaussian source. A computationally efficient iterative method introduced in [Opt. Lett. 35, 4148 (2010)] is used to provide ray diagrams in the nonlinear case and verify the focal shift compensation. We study the joint dependence of focal shift on waist size and intensity of Gaussian source, and show how to compensate spherical aberration caused by the nonlinearity by a small perturbation of the Lüneburg profile. Our results are specific to Lüneburg lens but our approach is applicable to more general cases of nonlinear nonperiodic metamaterials.

© 2011 Optical Society of America

OCIS Codes
(080.2710) Geometric optics : Inhomogeneous optical media
(190.0190) Nonlinear optics : Nonlinear optics
(190.4360) Nonlinear optics : Nonlinear optics, devices
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Nonlinear Optics

Original Manuscript: December 10, 2010
Revised Manuscript: January 17, 2011
Manuscript Accepted: January 17, 2011
Published: January 24, 2011

Virtual Issues
Vol. 6, Iss. 2 Virtual Journal for Biomedical Optics

Hanhong Gao, Satoshi Takahashi, Lei Tian, and George Barbastathis, "Aperiodic subwavelength Lüneburg lens with nonlinear Kerr effect compensation," Opt. Express 19, 2257-2265 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Gao, L. Tian, B. Zhang, and G. Barbastathis, "Iterative nonlinear beam propagation using Hamiltonian ray tracing and Wigner distribution function," Opt. Lett. 35, 4148-4150 (2010). [CrossRef] [PubMed]
  2. R. K. Lüneburg, Mathematical Theory of Optics (Brown U.P., Providence, 1944).
  3. H. Mosallaei, and Y. Rahmat-Samii, "Nonuniform Lüneburg and two-shell lens antennas: radiation characteristics and design optimization," IEEE Trans. Antenn. Propag. 49, 60-69 (2001). [CrossRef]
  4. C. S. Liang, D. A. Streater, J.-M. Jin, E. Dunn, and T. Rozendal, "A quantitative study of Lüneburg-lens reflectors," IEEE Antennas Propag. Mag. 47, 30-42 (2005). [CrossRef]
  5. N. A. Mortensen, O. Sigmund, and O. Breinbjerg, "Prospects for poor-man’s cloaking with low-contrast all dielectric optical elements," J. Eur. Opt. Soc. Rapid Publ. 4, 09008 (2009). [CrossRef]
  6. M. Takahashi, and H. Goto, Progress in Nonlinear Optics Research (Nova Science Publishers, 2008).
  7. M. Soljačić, C. Luo, J. Joannopoulos, and S. Fan, "Nonlinear photonic crystal microdevices for optical integration," Opt. Lett. 28, 637-639 (2003). [CrossRef]
  8. J. Bravo-Abad, S. Fan, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, "Modeling nonlinear optical phenomena in nanophotonics," J. Lightwave Technol. 25, 2539-2546 (2007). [CrossRef]
  9. D. V. Dylov, and J. W. Fleischer, "Nonlinear self-filtering of noisy images via dynamical stochastic resonance," Nat. Photonics 4, 323-328 (2010). [CrossRef]
  10. R. Boyd, Nonlinear optics, (3rd ed.) (Academic, 2008).
  11. R. Y. Chiao, E. Garmire, and C. H. Townes, "Self-Trapping of Optical Beams," Phys. Rev. Lett. 13, 479 (1964). [CrossRef]
  12. P. L. Kelley, "Self-Focusing of Optical Beams," Phys. Rev. Lett. 15, 1005 (1965). [CrossRef]
  13. Y. Kivshar, and G. Agrawal, Optical solitons, (Academic, 2003).
  14. J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, "Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices," Nature 422, 147-150 (2003). [CrossRef] [PubMed]
  15. D. N. Christodoulides, F. Lederer, and Y. Silberberg, "Discretizing light behavior in linear and nonlinear waveguide lattices," Nature 424, 817-823 (2003). [CrossRef] [PubMed]
  16. D. Anderson, "Variational approach to nonlinear pulse propagation in optical fibers," Phys. Rev. A 27, 3135-3145 (1983). [CrossRef]
  17. G. L. Alfimov, P. G. Kevrekidis, V. V. Konotop, and M. Salerno, "Wannier functions analysis of the nonlinear Schrödinger equation with a periodic potential," Phys. Rev. E 66, 046608 (2002). [CrossRef]
  18. K. B. Wolf, Geometric optics on phase space, (Springer, 2004).
  19. Y. Jiao, S. Fan, and D. A. B. Miller, "Designing for beam propagation in periodic and nonperiodic photonic nanostructures: Extended Hamiltonian method," Phys. Rev. E 70, 036612 (2004). [CrossRef]
  20. P. S. J. Russell, and T. A. Birks, "Hamiltonian optics of nonuniform photonic crystals," J. Lightwave Technol. 17, 1982-1988 (1999). [CrossRef]
  21. A. Walther, "Radiometry and coherence," J. Opt. Soc. Am. 58, 1256-1259 (1968). [CrossRef]
  22. E. Wolf, "Coherence and radiometry," J. Opt. Soc. Am. 68, 6-17 (1978). [CrossRef]
  23. M. Bastiaans, "Transport equations for the Wigner distribution function," Opt. Acta 26, 1265-1272 (1979). [CrossRef]
  24. S. Takahashi, C. Chang, S. Y. Yang, and G. Barbastathis, "Design and fabrication of dielectric nanostructured Lüneburg lens in optical frequencies," in Optical MEMS and Nanophotonics, (IEEE Photonics Society, 2010), Paper Th1-1, pp. 177-178.
  25. H. Gao, S. Takahashi, L. Tian, and G. Barbastathis, "Nonlinear Kerr effect aperiodic Lüneburg lens," in Optical MEMS and Nanophotonics, (IEEE Photonics Society, 2010), Paper Th1-2, pp. 179-180. [CrossRef]
  26. D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. Pendry, A. Starr, and D. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977 (2006). [CrossRef] [PubMed]
  27. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with a negative refractive index," Nature 455, 376-379 (2008). [CrossRef] [PubMed]
  28. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, "MEEP: A flexible free software package for electromagnetic simulations by the FDTD method," Comput. Phys. Commun. 181, 687-702 (2010). [CrossRef]
  29. A. Gutman, "Modified Lüneburg lens," J. Appl. Phys. 25, 855-859 (1954). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited