OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 2266–2277

Strong-field quantum control of 2 + 1 photon absorption of atomic sodium

Sangkyung Lee, Jongseok Lim, Chang Yong Park, and Jaewook Ahn  »View Author Affiliations

Optics Express, Vol. 19, Issue 3, pp. 2266-2277 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (926 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate ultrafast coherent control of multiphoton absorption in a dynamically shifted energy level structure. In a three-level system that models optical interactions with sodium atoms, we control the quantum interference of sequential 2 + 1 photons and direct three-photon transitions. Dynamic change in energy levels predicts an enormous enhancement of |7p〉-state excitation in the strong-field regime by a negatively chirped pulse. In addition, the |4s〉-state excitation is enhanced symmetrically by nonzero linear chirp rates given as a function of laser peak intensity and laser detuning. Experiments performed by ultrafast shaped-pulse excitation of ground-state atomic sodium verifies the various strong-field contributions to |3s〉-|7p〉 and |3s〉-|4s〉 transitions. The result suggests that for systems of molecular level understanding adiabatic control approach with analytically shaped pulses becomes a more direct control than feedback-loop black-box approaches.

© 2011 Optical Society of America

OCIS Codes
(190.4180) Nonlinear optics : Multiphoton processes
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(320.5540) Ultrafast optics : Pulse shaping

ToC Category:
Nonlinear Optics

Original Manuscript: December 8, 2010
Revised Manuscript: January 18, 2011
Manuscript Accepted: January 18, 2011
Published: January 24, 2011

Sangkyung Lee, Jongseok Lim, Chang Yong Park, and Jaewook Ahn, "Strong-field quantum control of 2 + 1 photon absorption of atomic sodium," Opt. Express 19, 2266-2277 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. S. Judson, and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett. 68, 1500–1503 (1992). [CrossRef] [PubMed]
  2. K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003–1025 (1998). [CrossRef]
  3. M. Shapiro, and P. Brumer, Principles of the quantum control of molecular processes,(Wiley, New York, 2003).
  4. D. J. Tanner, and S. A. Rice, “Control of selectivity of chemical reaction via control of wavepacket evolution,” J. Chem. Phys. 83, 5013–5018 (1985). [CrossRef]
  5. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000). [CrossRef]
  6. D. Goswami, “Optical pulse shaping approaches to coherent control,” Phys. Rep. 374, 385–481 (2003). [CrossRef]
  7. H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, “Whither the future of controlling quantum phenomena?” Science 288, 824–828 (2000). [CrossRef] [PubMed]
  8. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919 (1998). [CrossRef] [PubMed]
  9. D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396, 239–242 (1998). [CrossRef]
  10. T. Hournung, R. Meier, D. Zeidler, K.-L. Kompa, D. Proch, and M. Motzkus, “Optimal control of one- and two-photon transitions with shaped femtosecond pulses and feedback,” Appl. Phys. B 71, 277 (2000).
  11. Z. Zheng and A. M. Weiner, “Coherent control of second harmonic generation using spectrally phase coded femtosecond waveforms,” Chem. Phys. 267, 161 (2001). [CrossRef]
  12. D. Meshulach, and Y. Silberberg, “Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulse,” Phys. Rev. A 60, 1287 (1999). [CrossRef]
  13. Z. Amitay, A. Gandman, L. Chuntonov, and L. Rybak, “Multichannel selective femtosecond coherent control based on symmetry properties,” Phys. Rev. Lett. 100, 193002 (2008). [CrossRef] [PubMed]
  14. N. Dudovich, B. Dayan, S. M. Gallagher Faeder, and Y. Silberberg, “Transform-limited pulses are not optimal for resonant multiphoton transitions,” Phys. Rev. Lett. 86, 47–50 (2001). [CrossRef] [PubMed]
  15. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512 (2002). [CrossRef] [PubMed]
  16. J. P. Ogilvie, D. Débarre, X. Solinas, J. Martin, E. Beaurepaire, and M. Joffre, “Use of coherent control for selective two-photon fluorescence microscopy in live organisms,” Opt. Express 14, 759–766 (2006). [CrossRef] [PubMed]
  17. T. C. Weinacht, J. Ahn, and P. H. Bucksbaum, “Controlling the shape of a quantum wavefunction,” Nature 397, 233–235 (1999). [CrossRef]
  18. M. C. Stowe, A. Péer, and J. Ye, “Control of four-level quantum coherence via discrete spectral shaping of an optical frequency comb,” Phys. Rev. Lett. 100, 203001 (2008). [CrossRef] [PubMed]
  19. V. Blanchet, C. Nicole, M.-A. Bouchene, and B. Girard, “Temporal coherent control in two-photon transitions: from optical interferences to quantum interferences,” Phys. Rev. Lett. 78, 2717 (1997). [CrossRef]
  20. M. A. Bouchene, V. Blanchet, C. Nicole, N. Melikechi, B. Girard, H. Ruppe, S. Rutz, E. Scheriber, and L. Wörste, “Temporal coherent control induced by wave packet interferences in one and two photon atomic transitions,” Eur. Phys. J. D 2, 131 (1998). [CrossRef]
  21. B. Chatel, J. Degert, S. Stock, and B. Girard, “Competition between sequential and direct paths in a two-photon transition,” Phys. Rev. A 68, 041402 (2003). [CrossRef]
  22. S. Lee, J. Lim, and J. Ahn, “Strong-field two-photon absorption in atomic cesium: an analytical control approach,” Opt. Express 17, 7648 (2009). [CrossRef] [PubMed]
  23. S. Lee, J. Lim, J. Ahn, V. Hakobyan, and S. Guerin, “Strong-field two-photon transition by phase shaping,” Phys. Rev. A 82, 023408 (2010). [CrossRef]
  24. N. Dudovich, T. Polack, A. Péer, and Y. Silberberg, “Simple route to strong-field coherent control,” Phys. Rev. Lett. 94, 083002 (2005). [CrossRef] [PubMed]
  25. C. Trallero-Herrero, J. L. Cohen, and T. Weinacht, “Strong-field atomic phase matching,” Phys. Rev. Lett. 96, 063603 (2006). [CrossRef] [PubMed]
  26. H. Suchowski, A. Natan, B. D. Bruner, and Y. Silberberg, “Spatio-temporal coherent control of atomic systems: weak to strong field transition and breaking of symmetry in 2D maps,” J. Phys. At. Mol. Opt. Phys. 41, 074008 (2008). [CrossRef]
  27. E. A. Shapiro, V. Milner, C. Menzel-Jones, and M. Shapiro, “Piecewise adiabatic passage with a series of femtosecond pulses,” Phys. Rev. Lett. 99, 033002 (2007). [CrossRef] [PubMed]
  28. M. Wollenhaupt, A. Präkelt, C. Sarpe-Tudoran, D. Liese, and T. Baumert, “Quantum control by selective population of dressed states using intense chirped femtosecond laser pulses,” Appl. Phys. B 82, 183–188 (2006). [CrossRef]
  29. S. D. Clow, C. Trallero-Herrero, T. Bergeman, and T. Weinacht, “Strong field multiphoton inversion of a threelevel system using shaped ultrafast laser pulses,” Phys. Rev. Lett. 100, 233603 (2008). [CrossRef] [PubMed]
  30. T. Bayer, M. Wollenhaupt, C. Sarpe-Tudoran, and T. Baumert, “Robust photon locking,” Phys. Rev. Lett. 102, 023004 (2009). [CrossRef] [PubMed]
  31. P. Meystre, and M. SargentIII, Elements of Quantum Optics, 3rd ed. (Springer-Verlag, Berlin, 1991).
  32. D. A. Steck, Alkali D Line Data, http://steck.us/alkalidata/
  33. F. Verluise, V. Laude, Z. Cheng, Ch. Spielmann, and P. Tournois, “Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping,” Opt. Lett. 25, 575–577 (2000). [CrossRef]
  34. D. E. Keller, A. E. Kramida, J. R. Fuhr, L. Podobedova, and W. L. WIese, in NIST atomic Spectra database, NIST Standard Reference Database Version 4, http://physics.nist.gov/PhysRefData/ASD/

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited