OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 2278–2285

Phase shift spectra of a fiber–microsphere system at the single photon level

Akira Tanaka, Takeshi Asai, Kiyota Toubaru, Hideaki Takashima, Masazumi Fujiwara, Ryo Okamoto, and Shigeki Takeuchi  »View Author Affiliations

Optics Express, Vol. 19, Issue 3, pp. 2278-2285 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (910 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We succeeded in measuring phase shift spectra of a micro-sphere cavity coupled with a tapered fiber using a weak coherent probe light at the single photon level. We utilized a tapered fiber with almost no depolarization and constructed a very stable phase shift measurement scheme based on polarization analysis using photon counting. Using a very weak probe light ( = 0.41), we succeeded in observing the transition in the phase shift spectrum between undercoupling and overcoupling (at gap distances of 500 and 100 nm, respectively). We also used quantum state tomography to obtain a ‘purity spectrum’. Even in the overcoupling regime, the average purity was 0.982±0.024 (minimum purity: 0.892), suggesting that the coherence of the fiber–microsphere system was well preserved. Based on these results, we believe this system is applicable to quantum phase gates using single light emitters such as diamond nitrogen vacancy centers.

© 2011 Optical Society of America

OCIS Codes
(140.3948) Lasers and laser optics : Microcavity devices
(060.5565) Fiber optics and optical communications : Quantum communications
(270.5565) Quantum optics : Quantum communications

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: December 20, 2010
Revised Manuscript: January 18, 2011
Manuscript Accepted: January 18, 2011
Published: January 24, 2011

Akira Tanaka, Takeshi Asai, Kiyota Toubaru, Hideaki Takashima, Masazumi Fujiwara, Ryo Okamoto, and Shigeki Takeuchi, "Phase shift spectra of a fiber–microsphere system at the single photon level," Opt. Express 19, 2278-2285 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Griffel, S. Arnold, D. Taskent, A. Serpenguzel, J. Connolly, and N. Morris, "Morphology-dependent resonances of a microsphere-optical fiber system," Opt. Lett. 21, 695-697 (1996). [CrossRef] [PubMed]
  2. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, "Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper," Opt. Lett. 22, 1129-1131 (1997). [CrossRef] [PubMed]
  3. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, "Ultimate Q of optical microsphere resonators," Opt. Lett. 21, 453-455 (1996). [CrossRef] [PubMed]
  4. J. R. Buck, and H. J. Kimble, "Optimal sizes of dielectric microspheres for cavity QED with strong coupling," Phys. Rev. A 67, 033806 (2003). [CrossRef]
  5. H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, "Polarization-discriminated spectra of a fiber-microsphere system," Appl. Phys. Lett. 89, 121107 (2006). [CrossRef]
  6. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, "Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics," Phys. Rev. Lett. 91, 043902 (2003). [CrossRef] [PubMed]
  7. M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, "Fiber-coupled microsphere laser," Opt. Lett. 25, 1430-1432 (2000). [CrossRef]
  8. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, "Ultralow-threshold Raman laser using a spherical dielectric microcavity," Nature 415, 621-623 (2002). [CrossRef]
  9. H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, "Fiber-microsphere laser with a submicrometer sol-gel silica glass layer codoped with erbium, aluminum, and phosphorus," Appl. Phys. Lett. 90, 101103 (2007). [CrossRef]
  10. F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, "Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities," Biophys. J. 85, 1974-1979 (2003). [CrossRef] [PubMed]
  11. I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, "Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres," Phys. Rev. A 76, 043837 (2007). [CrossRef]
  12. H. Takashima, T. Asai, K. Toubaru, M. Fujiwara, K. Sasaki, and S. Takeuchi, "Fiber-microsphere system at cryogenic temperatures toward cavity QED using diamond NV centers," Opt. Express 18, 15169-15173 (2010). [CrossRef] [PubMed]
  13. H. F. Hofmann, K. Kojima, S. Takeuchi, and K. Sasaki, "Optimized phase switching using a single-atom nonlinearity," J. Opt. B 5, 218-221 (2003). [CrossRef]
  14. K. Kojima, H. F. Hofmann, S. Takeuchi, and K. Sasaki, "Efficiencies for the single-mode operation of a quantum optical nonlinear shift gate," Phys. Rev. A 70, 013810 (2004). [CrossRef]
  15. Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, "Measurement of conditional phase-shifts for quantum logic," Phys. Rev. Lett. 75, 4710-4713 (1995). [CrossRef] [PubMed]
  16. E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001). [CrossRef]
  17. T. D. Ladd, P. van Loock, K. Nemoto, W. J. Munro, and Y. Yamamoto, "Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light," N. J. Phys. 8, 184 (2006). [CrossRef]
  18. A. Beveratos, S. Kuhn, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, "Room temperature stable single photon source," Eur. Phys. J. D 18, 191-196 (2002). [CrossRef]
  19. K. Totsuka, and M. Tomita, "Slow and fast light in a microsphere-optical fiber system," J. Opt. Soc. Am. B 23, 2194-2199 (2006). [CrossRef]
  20. M. Tomita, M. Okishio, T. Matsumoto, and K. Totsuka, "Observation of normal and anomalous dispersions in a microsphere taper fiber system," J. Phys. Soc. Jpn. 78, 035001 (2009). [CrossRef]
  21. T. Asai, H. Konishi, H. Takashima, H. Fujiwara, S. Takeuchi, and K. Sasaki, "Optical phase shift observed in a resonance mode of a tapered-fiber coupled with a microsphere resonator," in Meeting Abstracts of the Phys. Soc. of Japan, (Academic, Osaka, Japan, 2008) 63, 23pQD-13, pp. 152.
  22. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, "Measurement of qubits," Phys. Rev. A 64, 052312 (2001). [CrossRef]
  23. A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, "Fano resonance in a multimode tapered fiber coupled with a microspherical cavity," Appl. Phys. Lett. 86, 261106 (2005). [CrossRef]
  24. L. Collot, V. Lefevreseguin, M. Brune, J. M. Raimond, and S. Haroche, "Very high-Q whispering-gallery mode resonances observed on fused-silica microspheres," Europhys. Lett. 23, 327-334 (1993). [CrossRef]
  25. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, "Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper," Opt. Lett. 22, 1129-1131 (1997). [CrossRef] [PubMed]
  26. N. Dubreuil, J. C. Knight, D. K. Leventhal, V. Sandoghdar, J. Hare, and V. Lefevre, "Eroded monomode optical fiber for whispering-gallery mode excitation in fused-silica microspheres," Opt. Lett. 20, 813-815 (1995). [CrossRef] [PubMed]
  27. A. Yariv, Optical Electronics in Modern Communications, pp. 12 (Oxford, 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited